
Interest rate derivatives form a key part of the derivatives industry. Valua-
tion of interest rate derivatives is thus an important topic. European-style
options on Libor (caplets and floorlets) and swap rates (swaptions) are

valued with Black’s formula. Input to this formula is the current level and
implied volatility of a single interest rate, be it the forward Libor or swap
rates. A more challenging situation arises when derivatives need to be val-
ued that depend on the joint and inter-temporal distribution of several in-
terest rates. Examples of such multi-rate dependent derivatives include ratchet
caps, Bermudan swaptions and callable range accrual swaps. The interde-
pendence of interest rates can be modelled, to first-order approximation, by
their correlation. Short-rate models feature correlation that depends in a com-
plicated manner on the model parameters. Therefore, calibration to corre-
lation requires a specific indirect approach per short rate model. For a natural
and more controllable correlation-calibration, and for other reasons, research
has focused on the Libor market model of Brace, Gatarek & Musiela (1997).1

This model allows the specification of any forward Libor correlation matrix.
The hard part of the work, say 80%, of equipping a Libor production model
with correlation, consists of estimating this correlation matrix in a stable and
meaningful manner from historical or market-implied data. In this article, we
address the remaining 20%, which is fitting a low-factor model to the re-
sulting high-rank correlation matrix. The reason for the low number of fac-
tors is the gain in computational speed. Moreover, usually a large part of the
variance of typical Libor correlation matrices can already be attributed to a
low number of factors. Here, we develop a novel algorithm, based on ma-
jorisation, to tackle this low-rank approximation problem. 

The number of factors driving the model is denoted by d, usually d <<
n, with n denoting the number of forward rates. Forward rate li satisfies 

(1)

Here, σi denotes the volatility of li, X is an n × d matrix distributing the
volatility over the d factors with xi denoting row i of X, the wj denote
Brownian motions, and R is the estimated n × n forward rates instanta-
neous correlation matrix. The relation linking X and R is XXT = R, which
implies that R has rank d or less. For arbitrarily given R, this rank restric-
tion will generally not be satisfied. Therefore, an approximation is required,
either of correlation or covariance. When pricing derivatives, we are more
certain of volatility, since it is quoted in the market. Therefore, we fit vari-
ance exactly and approximate correlation. We are then led to solve the fol-
lowing optimisation problem. Find an n × d matrix X to minimise:

(2)

subject to ||xi||2 = 1, where ||xi||
2
2 = Σd

j = 1x
2
ij. The ωij are non-negative weights,

given by the user to set the importance of correlation rij. 
A well-known straightforward technique of obtaining a low-rank cor-

relation matrix XXT, is the modified principal component analysis (PCA)
approach, for example, Hull & White (2000).2 The method takes the d
largest eigenvalues from an eigenvalue decomposition, and then rescales
(this is the modified part) the resulting matrix XPCA to ensure XPCAXT

PCA
has unit diagonal. A strong drawback of modified PCA is its non-optimal-
ity. In general, one may find low-rank matrices XXT closer to R than the
modified-PCA matrix XPCAXT

PCA, even in the neighbourhood of the latter.
Therefore, optimisation methods have been developed to minimise the ob-
jective function f(X) of (2).

Majorisation is a general technique from optimisation. The main idea is
briefly described here. Let g(⋅; Y) be an auxiliary function at a given point
Y, such that f(Y) = g(Y; Y); f(X) ≤ g(X; Y), V-X; and g(⋅; Y) is ‘simple’, that
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is, it is straightforward to find the minimum of g(⋅; Y).
Then, starting at a point Y = X0, we find the minimum X1 of the aux-

iliary function g(X; X0). Then, we set Y = X1, find the minimum X2 of the
auxiliary function g(X; X1), and so on. This procedure guarantees that the
objective function value does not increase over the points produced by
the algorithm, since:

(3)

For low-rank approximation majorisation, Pietersz & Groenen (2004)3 show
that inequality (*) is strict whenever Xk is not a local minimum. This fact guar-
antees that majorisation is globally convergent to a local minimum. The ma-
jorisation algorithm for (2) can be derived as follows. Essentially, quadratic
problem (2) is tackled by splitting it up into a sequence of linear problems.
We majorise the objective function f(⋅) per row, that is, as a function of the
ith row of X. If we denote by xi and y the running and current ith row of X,
respectively, then it is shown in Pietersz & Groenen (2004), that:

(4)

with the d × d matrix:

and with λ the largest eigenvalue of B. The minimum of g(⋅; X) is x*
i, de-

fined by:

(5)

If z = 0, then it may be shown that X is already a local minimum with re-
spect to the ith row, and then x*

i = y. The resulting majorisation algorithm
is displayed below.
■ Input R, Ω, d, ε. Take X as the modified-PCA solution XPCA. For k = 1,
2, ... . For i = 1, ... , n:

Calculate λ as the largest eigenvalue of B. Calculate z as:

If z ≠ 0, set xi equal to z/||z||2. End for. Stop if the function-value improve-
ment fk – 1/fk – 1 is less than ε. End for. Output: XXT is a rank-d approxi-
mation of R. 

The majorisation algorithm has been implemented in a Matlab package
called major, downloadable from www.few.eur.nl/few/people/pietersz.

Introducing a novel algorithm is only justified if it is more efficient than
existing algorithms. Pietersz & Groenen (2004) compare majorisation nu-
merically with the algorithms available in the literature, with a benchmark of
the accuracy of fit given a computational time constraint. The limit on com-
putational time is close to financial practice, since decisions based on deriv-
atives pricing calculations need to be made often within seconds. The results
show that majorisation compares favourably with the other algorithms. In
fact, in all cases considered, majorisation is the most efficient algorithm. ■
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