
Risk-Managing Bermudan
Swaptions in a LIBOR Model
RAOUL PIETERSZ AND ANTOON PELSSER

RAOUL PIETERSZ
is a Ph.D. candidate in
management at Erasmus
University in Rotterdam,
and a senior derivatives
researcher at ABN AMRO
Bank in Amsterdam,
The Netherlands.
pietersz@few.eur,nl

A N T O O N PELSSER

is a professor of mathemat-
ical finance at Erasmus
University in Rotterdam,
and head of ALM at ING
Insurance Group Risk
Management also in
Rotterdam.
pelsser@few.eur.nl

This article presents a new approach to calculating

swap vega per bucket in a LIBOR model. It shows

that for some forms of volatility an approach based

on recalibration may make estimated swap vega very

uncertain, as the instantaneous volatility structure

may be distorted by recalibration. This does not

happen in the case of constant swap rate volatility.

An alternative approach not based on recalibration

comes out of comparison with the swap market model.

It accurately estimates vegasfor any volatility func-

tion in few simulation paths. The key to the method

is that the perturbation in LIBOR volatility is dis-

tributed in a clear, stable, and well-understood

fashion, while in the recalibration method the change

in volatility is hidden and potentially unstable.

T
he LIBOR interest rate model
developed by Brace, Gatarek, and
Musiela [1997], Jamshidian [1997],
and Miltersen, Sandmann, and Son-

derniann [1997] is popular among both aca-
demics and practitioners alike. We will call this
the BGM model.

One reason the LIBOR BGM model is
popular is that it can risk-manage interest rate
derivatives that depend on both the cap and
swaption markets, which would make it a cen-
tral interest rate model. It features lognormal
LIBOR and almost lognormal swap rates, and
thus also the market-standard Black formula
for caps and swaptions. Approximate swaption
volatility formulas such as in Hull and White
[2000] have been shown to be of high quality

(see Brace, Dunn, and Barton [1998]).
There remain a number of issues to be

resolved to use BGM as a central interest rate
model. One issue is the calculation of swap
vega. A common and usually very successful
method for calculating a Greek in a model
equipped with a calibration algorithm is to
perturb market input, recalibrate, and then
revalue the option. The difference in value
divided by the perturbation size is then an
estimate for the Greek.

If this technique is applied to the calcu-
lation of swap vega in the LIBOR BGM
model, however, it may (depending on the
volatility function) yield estimates with high
uncertainty. In other words, the standard error
of the vega is relatively high. The uncertainty
disappears, of course, if we increase the number
of simulation paths, but the number required
for clarity can far exceed 10,000, which is prob-
ably the maximum in a practical environment.

For a constant-volatility calibration, how-
ever, the vega is estimated with low uncer-
tainty. The number of simulation paths needed
for clarity of vega thus depends on the chosen
calibration. The reason is that for certain cal-
ibrations, under a perturbation, the additional
volatility is distributed unevenly and one might
even say unstably over time. For a constant-
volatility calibration, of course, this additional
volatility is naturally distributed evenly over
time. It follows that there is higher correlation
between the discounted payoffs along the orig-
inal path and perturbed volatility. As the vega
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is the expectation of the difference between these payoffs
(divided by the perturbation size), the standard error will
be lower.

We develop a method that is not based on recali-
bration to compute swap vega per bucket in the LIBOR
BGM model. It may be used to calculate swap vega in
the presence of any volatility function, with predictability
at 10,000 or fewer simulation paths. The strength of the
method is that it accurately estimates swap vegas for any
volatility function and in few simulation paths.

The key to the method is that the perturbation in
the LIBOR volatility is distributed in a clear, stable, and
well-understood fashion, while in the recalibration method
the change in volatility is hidden and potentially unstable.
The method is based on keeping swap rate correlation
fixed but increasing the instantaneous volatility of a single
swap rate evenly over time, while all other swap rate
volatilities remain unaltered.

It is important to verify that a calculation method
reproduces the correct numbers when the answer is
known. We benchmark our swap vega calculation method
using Berniudan swaptions for two reasons. First, a
Bermudan swaption is a complicated enough (swap-based)
product (in a LIBOR-based model) that depends non-triv-
ially on the swap rate volatility dynamics; for example, its
value depends also on swap rate correlation. Second, a
Bermudan swaption is not as complicated as some other
more exotic interest rate derivatives, and some intuition
exists about its vega behavior. We show for Bermudan
swaptions that our method yields almost the same swap
vega as found in a swap market model,

Glasserman and Zhao [1999] provide efficient algo-
rithms for calculating risk sensitivities, given a perturba-
tion of LIBOR volatility. Our problem differs from theirs
in that we derive a method to calculate the perturbation
of LIBOR volatility to obtain the correct swap rate
volatility perturbation for swaption vega. The Glasserman
and Zhao approach may then be applied to efficiently
compute the swaption vega, with the LIBOR volatility
perturbation we find using our method,

I. RECALIBRATION APPROACH

We first consider examples of the recalibration
approach to computing swap vega. Three calibration
methods are considered. We show that, for two of the
three methods, the resulting vega is hard to estimate and
many simulation paths are needed for clarity.

The notation is as follows, A BGM model features

a tenor structure 0 < Tj < ,,, < T'̂ y+i and N forward rates
L. accruing from T. to T..,, /' = 1, ,,,, N. Each forward
rate is modeled as a geometric Brownian motion under
its forward measure:

t) for 0 < i <

The positive integer d is referred to as the number of
factors of the model. The function a:. [0, T] —> R'' is the
volatility vector function of the /-th forward rate. The
fe-th component of this vector corresponds to the fe-th
Wiener factor of the Brownian motion, W'*^ is a (/-dimen-
sional Brownian motion under the forward measure Q,+ i,

A discount bond pays one unit of currency at matu-
rity. The time t price of a discount bond with maturity
T. is denoted by B.{f). The forward rates are related to
discount bond prices as follows:

1
- ' }

where 5. is the accrual factor for the time span [T., 7 .̂,.|],
The swap rate corresponding to a swap starting at

T. and ending at T.^| is denoted by S_,,, The swap rate is
related to discount bond prices as follows:

where PVBP denotes the present value of a basis point:

k=i

It is understood that PVBP,. s 0 whenever / < i.
We consider the swap rates S^.j^, ..., Sj^,.^, corre-

sponding to the swaps underlying a coterminal Bermudan
swaption,' Swap rate S^.^, is a martingale under its forward
swap measure Q.-.̂ y, We may thus implicitly define its
volatility vector a.,^, by:

for 0 < i < (1)

In general, a..̂ , will be stochastic because swap rates
are not lognormally distributed in the BGM model,
although they are very close to lognormal as shown, for
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E X H I B I T 1
Market European Swaption Volatilities

Expiry (Y)
Tenor (Y)

Swaption
Volatility

1
30

15.0%

2
29

15.2%

3
28

15.4% ..

28
3

. 20.4%

29
2

20.6%

30
1

20.8%

example, by Brace, Dunn, and Barton [1998]. Because
of near lognormality, the Black formula approximately
holds for European swaptions. There are closed-form for-
mulas for the swaption's Black implied volatility; see, for
example, Hull and White [2000].

We model LIBOR instantaneous volatility as con-
stant in between tenor dates (piecewise-constant). A
volatility structure {a. {•)}^i is piecewise-constant if:

ai{t) = (const), te [Ti_i,T,)

The volatility will sometimes be modeled as time-
homogeneous. To define this, first define a fixing to be one
of the time points T,, ..., T^,. Define i: [0, 7]—>{1, ..., N}:

.(i) = # { fixings in [0.^)}

A volatility structure is said to be time-homogeneous if
it depends only on the index to maturity (' — (,(t).

Three volatility calibration methods are considered:

1. (THFRV)—Time-homogeneous forward rate volatility.

This approach is based on ideas ofRebonato [2001].
Because of the time-homogeneity restriction, there
are as many parameters as market swaption volatil-
ities. A Newton-Rhapson sort of solver may be used
to find the exact calibration solution (if there is one).

2. (THSRV)—Time-homogeneous simp rate volatility. The

algorithm for calibrating with such a volatility func-
tion is a two-stage bootstrap. The first and the second
stage are described in Equation (6.20) and Section
7.4 of Brigo and Mercurio [2001].

3. (CONST)—Constantfonmrd rate volatility Note that
constant forward rate volatility implies constant swap
rate volatility. The corresponding calibration algo-
rithm is similar to the second stage of the two-stage
bootstrap.

All calibration methods have in common that the
forward rate correlation structure is calibrated to a his-
torical correlation matrix using principal components

analysis (PCA); see Hull and White [2000]. Correlation
is assumed to evolve time-homogeneously over time.

We consider a 31 N C I coterminal Bermudan pay-
er's swaption deal struck at 5% with annual compounding.
The notation xNCy denotes an "x non-call y" Bermudan
option, which is exercisable as a swap with a maturity of
X years from today but is callable only after y years. The
option is callable annually.

The BGM tenor structure i s O < l < 2 < - - < 3 1 .
All forward rates are taken to equal 5%. The time zero for-
ward rate instantaneous correlation is assumed following
Rebonato [1998, p. 63] as:

where /? is chosen to equal 5%. The market European
swaption volatilities were taken as displayed in Exhibit 1.

To determine the exercise boundary, we use the
Longstaff and Schwartz (2001] least squares Monte Carlo
method. Only a single explanatory variable is considered,
namely, the swap net present value (NPV). Two regres-
sion functions are employed, a constant and a linear term.

For each bucket a perturbation Aa{~ 10"̂ ) is applied
to the swaption volatility in the calibration input data.^ The
model is recalibrated, and we check to see that the cali-
bration error for all swaption volatilities is a factor lO*"
lower than the volatility perturbation. The Bermudan
swaption is repriced through Monte Carlo simulation
using the exact same random numbers.

Denote the original price by V and the perturbed
price by K.̂ y. Then the recalibration method of estimating
swap vega V^.j^, for bucket / is given by:

Vi:N - V

Aa (2)

Usually the swap vega is denoted in terms of a shift
in the swaption volatility. For example, consider a 100
basis point (bp) shift in the swaption volatility. The swap
vega scaled to a 100 bp shift I/'.^I'P is then defined by
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E X H I B I T 2
Recalibration Swap Vega Results for 10,000 Simulation Paths
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Swap vega results for a Monte Carlo simulation of
10,000 scenarios are displayed in Exhibit 2. The standard
errors (SEs) are displayed separately in Exhibit 3. The levels
of SE for THFRV and CONST are 6.00 and 0.25, respec-
tively. The number of paths needed for THFRV to obtain
the same SE as CONST is thus (6/0.25)2 X 10,000 = 5.8M.
For THSRV, we find 1.4M paths are needed.

Exhibit 4 displays the THFRV vega for 1 million
simulation paths.

II. EXPLANATION

The key to explanation of the vega results under
recalibration is the change in swap rate instantaneous vari-
ance after recalibration. For the THFRV and THSRV
recalibration approaches, the instantaneous variance incre-
ment (in the limit) is completely different from a con-
stant- volatility increment. This holds for all buckets.

For illustration, we consider the volatility perturba-
tion shown in Exhibit 5. For THFRV, the distribution of
the variance increment is concentrated in the beginning
and ending time periods, and is even negative in the second
time period. This is at variance with the natural and intu-
itive even distribution in the CONST recalibration.

E X H I B I T 3
Empirical Standard Errors of Vega
for 10,000 Simulation Paths
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From Equation (2), it follows that the simulation
variance of the vega is given by

Var[P]

(3)
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E X H I B I T 4
Recalibration THFRV Vega Results
for 1 Million Simulation Paths
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E X H I B I T 5
Observed Change in Swap Rate
Instantaneous Variance for THFRV and CONST
Recalibration Approach
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where P and P..^ are the payoffs along the path of the
original and the perturbed model, respectively. Here c :=

The vega standard error is thus minimized if there
is high covariance between the discounted payoffs in the
original and the perturbed model. This does not occur
for a perturbation such as dictated by THFRV, because tbe
stochasticity in the simulation is basically moved around
to other time periods (in our case from period 2 to period
1). Because the rate increments over different time periods
are independent, this leads to a reduced covariance, leading
in turn to a higher standard error of the vega.

There is higher covariance between the payoffs under
the perturbations of variance implied by the CONST cal-
ibration, because then each independent time period main-
tains approximately the same level of variance; no
stochasticity is moved to other random sources. From Equa-
tion (3), it then follows that the standard error is lower.

III. SWAP VEGA AND
THE SWAP MARKET MODEL

An alternative method for calculating swap vega has
the advantage that the estimates of vega have a low stan-
dard error for any volatility function. The first step is to
study the definition of swap vega in the swap market
model, which we will extend to the LIBOR BGM model.
This will give us an alternative method to calculate swap
vega per bucket.

How much our dynamically managed hedging port-
folio should hold in European swaptions is essentially
determined by the swap vega per bucket. Tbe latter is the
derivative of the exotic price with respect to the Black
implied swaption volatility.

Consider a swap market model S. In the model,
swap rates are lognornially distributed under their for-
ward swap measure. This means that all swap rate volatility
functions CT.,^,(-) of Equation (1) are deterministic. The
Black implied swaption volatility CTJ^.J^ is given by

As may be seen in this equation, there are an
uncountable number of perturbations of the swap rate
instantaneous volatility that produce the same perturba-
tion as the Black implied swaption volatility. There is,
however, a natural one-dimensional parameterized per-
turbation of tbe swap rate instantaneous volatility, namely,
a simple proportional increment. This is illustrated in
Exhibit 6.

We define swap vega in tbe swap market model as
follows. Denote the price of an interest rate derivative
in a swap market model S by V. Consider a perturba-
tion of the swap rate instantaneous volatility given by
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E X H I B I T 6
Natural Increment of Black
Implied Swaption Volatility

Time

where the shift applies only to k:N. Denote the corre-
sponding swap market model by iS ,̂.̂ ,(£)- Note that the
implied swaption volatility in S f,.^{£) is given by o^^,^, = (1
+ e)CTj,.ĵ ,. Denote the price of the derivative in 5ĵ .̂ ,(e) by
V^.j^le). Then the swap vega per bucket F ,̂.̂ , is defined as

(5)

Equation (5) is the derivative of the exotic price
with respect to the Black implied swaption volatility. In
conventional notation we may write

Vk:N =
dv

= lim

where the shift applies only to k : N. This ensures that the
absolute level of the swap rate instantaneous volatility is
increased by an amount e. Note that the relative and abso-
lute perturbation are equivalent when the instantaneous
volatility is constant over time.

The method for calculating swap vega per bucket is
largely the same for both relative and absolute perturba-
tion (but we will point out any differences). The first dif-
ference is in the change in swaption implied volatility
ACTJ,.̂ , of Equation (6); namely, straightforward calcula-
tions reveal that the perturbed volatility satisfies

IV. ALTERNATIVE METHOD EOR
CALCULATING SWAP VEGA

An alternative method for calculating swap vega in
the BGM framework may be applied to any volatility
function to yield accurate vega with a small number of
simulation paths. The method is based on a perturbation
in the forward rate volatility to match a constant swap
rate volatility increment. Rebonato [2002] also derives
this method in terms of covariance matrices, but our
derivation is explicitly in terms of volatility vectors.

Swap rates are not lognormally distributed in the
LIBOR BGM model. This means that swap rate instan-
taneous volatility is stochastic. The stochasticity is almost
invisible as shown empirically, for example, by Brace, Dunn,
and Barton [1998]. D'Aspremont [2002] shows that the
swap rate is uniformly close to a lognormal martingale.

Hull and White [2000] show that the swap rate
volatility vector is a weighted average of forward LIBOR
volatility vectors:

(6)

In Equation (5) £O'i^,^, is equal to the swaption
volatility perturbation ACTJ,.̂ ,, and Vi,.^{£) and Fdenote the
prices of the derivative in models where the fe-th swap-
tion volatility equals aj,.^, + Ao"j,.̂ , and cr^,.^, respectively.

The swap rate volatility perturbation in Equation
(4) defines a relative shift. It is also possible to apply an
absolute shift in the form of

= 1 (7)

PVBP i..N{t) (8)

where the weights M/'''"̂ ' are in general state-dependent.
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Hull and White derive an approximating formula for
European swaption prices that is based on evaluating the
weights in Equation (8) at time zero. This is a good
approximation by virtue of the near lognormality of swap
rates in the LIBOR BGM model. We denote the resulting
swap rate instantaneous volatility by a ^.J( as follows:

(9)

and adopt the con-When we write
vention that

ai{t) = ai:Ar(i) = 0 when t > T^

a useful form of Equation (9) is:

E X H I B I T 7
Swap Vega Results for 10,000 Simulation Paths
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Error bars denote 95% confidence bound based on the standard error.

tors, prices can be recomputed in the BGM model and the
vegas calculated.

(10)

If IV is tbe upper triangular non-singular weight
matrix (with upper triangular inverse H^'), these volatility
vectors can be jointly related through the matrix equation:

[ a..,N ] = W [ a . ]

The swap rate volatility under relative perturbation
[Equation (4)] of the fe-th volatility is

] ] +
e\ 0 0

Note that the swap rate correlation is left unaltered.
The corresponding perturbation in the BGM volatility
vectors is given by

' [0 (11)

Note that only tbe volatility vectors (T (̂t), ...,
are affected (due to the upper triangular nature of
which are the vectors that underlie ^i^.^it) in tbe Hull and
Wbite approximation. With the new LIBOR volatility vec-

V. NUMERICAL RESULTS

We demonstrate the algorithm in a simulation with
10,000 paths. Tbe results are displayed in Exhibit 7. Note
that the approacb yields sligbtly negative vegas for buckets
17-30.

In the appendix we sbow tbat negative values are
not a spurious result. That is, for the analytically tractable
setup of a two-stock Bermudan option, negativity of vega
occurs with correlation = 1, and volatilities for short expi-
ration dates are higher than volatilities at longer expiration
dates—this of course is in a typical interest rate setting.

The vegas were also calculated for tbe absolute per-
turbation nietbod in results not displayed. Tbe differences
in the vegas for tbe two methods are minimal; for any
vega with absolute value above 1 bp, the difference is less
than 4%, and for any vega with absolute value below 1
bp, the difference is always less than a tbird of a basis point.

VI. COMPARISON WITH
THE SWAP MARKET MODEL

Tbe swap market model (SMM) is the canonical
model for computing swap vega per bucket. We com-
pare the LIBOR BGM model and a swap market model
with the very same swap rate quadratic cross-variation
structure. Approximate equivalence between the two
models has been established byjoshi and Theis [2002,
Equation (3.8)].
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E X H I B I T 8
Swap Vega per Bucket Test Results for Varying Strikes—10,000 Simulation Paths

BGM

Fixed
Rate

Value

LIBOR

2 %

2171
(4)

MODEL

3 %

1476
(5)

3.5%

1138
(5)

4 %

829
(5)

4.5%

585
(5)

5%

410
(4)

6 %

210
(3)

7%

112
(2)

8%

64
(2)

9 %

36
(1)

1 0 %

21

(1)

1 2 %

8
(1)

1 5 %

2
(0)

l Y
2Y
3 Y
4Y
5Y
6Y
7Y
8Y
9Y

lOY

-2.0
1.5
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

-2.0
1.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

2.6
1.0

-0.3
-0.1
-0.1
-0.1
-0.1
0.0

0.0
0.0

10.9
2.6
0.1

-0.1
-0.2
-0.2
-0.2
-0.1
-0.1
0.0

11.1
5.7
2.5
1.1
0.4

0.1
0.0

-0.1
-0.1
0.0

7.0
6.8
4.5
2.7
1.5
0.8
0.3
0.1
0.0
0.0

1.2
4.0
4.1
4.4
3.7
2.1

1.3
0.7

0.3
0.1

0.1
1.0
2.1
3.6
3.6

2.5
1.8
1.3
0.7
0.3

0.0
0.0
1.0
2.0
2.7
2.0
1.8
1.5
0.8
0.3

0.0
0.0
0.3
1.1

1.5
1.7

1.6
1.3

0.8
0.4

0.0
0.0
0.0
0.5
1.0
1.2
1.1
1.3
0.8
0.4

0.0
0.0
0.0
0.2
0.3
0.3
0.5
0.9

0.6
0.3

0.0
0.0
0.0
0.1
0.1
0.2
0.0
0.3
0.3
0.2

Total
Vega

SWAP

Fixed
Rate

Value

-0.5 -0.4

MARKET

2 %

2172
(6)

3 %

1480
(6)

2.9

MODEL

3.5%

1146
(6)

12.8

4 %

841
(5)

20.8

4.5%

592
(5)

23.8

5 %

411
(4)

21.9

6%

204
(4)

16.9

7%

109
(3)

12.3

8%

61
(2)

8.8

9 %

34
(1)

6.2

10%

19

(1)

3.1

1 2 %

7
(1)

1.0

1 5 %

1
(0)

l Y
2Y
3Y

4Y
5Y
6Y
7Y
8Y
9Y

lOY

-1.9
1.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

-0.7
1.6

-0.1
-0.1
0.0
0.0
0.0
0.0
0.0
0.0

4.4
1.1

-0.4
-0.2
-0.2
-0.1
-0.1
0.0
0.0
0.0

11.3
2.2
0.0

-0.1
-0.2
-0.2
-0.2
-0.1
-0.1
0.0

11.5
5.2
2.0

0.9
0.4

0.1
-0.1
-0.1
-0.1
0.0

6.2
7.5
4.6
2.7
1.6
0.8
0.3
0.1

0.0
0.0

0.4
3.6
4.7
4.8
3.7
2.6
1.3
0.8
0.4
0.1

0.0
0.5
2.2

3.7
3.0
3.3
2.0
1.3
0.9
0.3

0.0
0.0
0.6
1.7
2.3
3.1
1.9
1.5

1.0
0.4

0.0
0.0
0.2
0.8
1.2

2.3
1.3
1.5
1.0
0.5

0.0
0.0
0.0

0.3
0.5
1.2
1.4
1.2

0.9
0.5

0.0
0.0
0.0
0.1
0.1
0.2
0.8
0.6
0.7
0.4

0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.2

0.3
0.3

Total
Vega -0.3 0.6 4.5 12.6 19.9 23.8 22.3 17.2 12.5 6.0 2.9

Prices and vcgas are in basis points. Standard errors in parentheses.

0.9

We perform the test for an 11 NCI pay-fixed .Bermu-
dan option on a swap with annual fixed and floating pay-
ments. A single-factor LIBOR BGM model is used with
constant volatility calibrated to the euro cap volatility curve
of October 10, 2001. The zero rates were taken to be flat
at 5%. In the Monte Carlo simulation of the SMM we
apply the discretization suggested in Lemma 5 of
Glasserman and Zhao [2000].

Results appear in Exhibit 8, and are displayed par-
tially in Exhibits 9 and 10. In this particular case, the BGM
LIBOR model reproduces the swap vegas of the swap market
model very accurately.

VII. CONCLUSIONS

We have presented a new approach to calculating
swap vega per bucket in the LIBOR BGM model. We
show that for some forms of the volatility an approach
based on recalibration may lead to great uncertainty in esti-
mated swap vega, as the instantaneous volatility structure
may be distorted by recalibration. This does not happen in
the case of constant swap rate volatility.

We derive an alternative approach that is not based on
recalibration, using the swap market model. The method
accurately estimates swaption vegas for any volatility func-

58 RISK-MANAGING BEKMUDAN SWAPTIONS IN A LIBOR Moom, Sl'RlNG 2004



E X H I B I T 9

Comparison of LMM and SMM for Swap Vega per Bucket

8| 1 1 1 1 1 p

a
O)

• I BGM Libor Model
I I Swap Market Model

JQ •n
3 4 5 6 7 8

European Swaption Bucket (Y)
10

E X H I B I T 1 0
Comparison of LMM and SMM for Total Swap Vega Against Strike

25

20

BGM Libor Modei
Swap Market Model

0% 6% 9%
Strike / Fixed Coupon

12% 15%

SPRING 2004 THE JOURNAL OF DERIVATIVES 5 9



tion and at a small number of simulation paths.
The key to the method is that the perturbation in the

LIBOR volatility is distributed in a clear, stable, and well-
understood fashion, but in the recalibration method the
change in volatility is hidden and potentially unstable. We
also show for a Bermudan swaption deal that our method
yields almost the same swap vega as a swap market model.

APPENDIX

Negative Vega for a
Two-Stock Bermudan Option

We examine a two-stock Bermudan option to show that
its vega per bucket is negative in certain situations. The holder
of a two-stock Bermudan option has the right to call the first
stock S| at strike K^ at time Tp if the holder decides to hold
the option, the right remains to call the second stock S- at strike
K^ at time T2, if this right is not exercised, then the option
becomes worthless. Here T^ < T^.

The Bermudan option is valued under standard Black-
Scholes conditions. Under the risk-neutral measure, the stock
prices satisfy the stochastic differential equations:

1 Q

l for 1 =

= pdt

where a. is the volatility of the i-th stock, and W., i = 1, 2, are
Brownian motions under the risk-neutral measure, wth cor-
relation p. It follows that the time T̂  stock prices are distributed
as follows:

exp { ai - \o'iT, } for (A-1)

where the pair (Z,, Z^ is standard bivariate nomially distributed
with correlation p and where

F{S,t;T) := S exp | r{T - t) \ (A-2)

is the time (forward price for delivery at time Tof a stock with
current price S.

At time T^, the holder of the Bermudan option will
choose whichever of two alternatives has a higher value: either
calling the first stock, or holding the option on the second
stock; the value of the latter is given by the Black-Scholes
formula.

Therefore the (cash-setded) payoff K(S,(T|), S2
of the Bermudan at time T^ is given by:

maxx { ( ) } (A-3)

where BS is the Black-Scholes formula:

BSi{S,T) = e-'-'^--^)

(A-4)

where N() is the cumulative normal distribution function.
The time zero value K(5j, S,, 0) of the Bermudan option

may thus be computed by a bivariate normal integration of the
discounted version of the payoff in Equation (A-3):

The vega per bucket V is defined as

The vega may be numerically approximated by finite
differences:

^

for i = l,2

for a small volatility perturbation Aa. "^ 1.
We note that the vega per bucket may possibly be neg-

ative for both the first and the second bucket. As an example
of vega negativity, we compute the vega per bucket for the
deal described in Exhibit A-1. Results are displayed in Exhibit
A-2. The volatility is perturbed by a small amount.

The resulting vega is insensitive to either the perturba-
tion size or the density of the 2D integration grid. In several
instances a vega per bucket is negative, in both the first and
the second bucket.

To ensure that the negative vega is not due to an imple-
mentation error, we develop an alternative valuation of the
two-stock Bermudan option (available upon request). It is based
on conditioning and involves a one-dimensional numerical
integration over the Black formula. The alternative method
yields the exact same results.

Note in Exhibit A-2 that the negative vegas occur in the
case of high correlation and for the bucket with the lowest
volatility. In the case of high correlation and one stock with
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Ki
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T2
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P
r

150
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100
lY
2Y
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0.9
5%

E X H I B I T A - 2
Results for Negative Vega per Bucket for
Two-Stock Bermudan Option

(72 price VlOObp ,,100bp

Scenario 1 10% 30% 64.53 -0.45 0.56
Scenario 2 30% 10% 65.11 0.56 -0.44

significantly higher volatility than the other, we contend that
the only added value of the additional option on the low-
volatility stock lies in offering protection against a down move
of both stocks (recall that the stocks are highly correlated).
There are two scenarios:

• Up move. Both stocks move up. Because the high-
volatility stock moves up much more than the low-
volatility stock, the high-volatility call will be exercised.

• Down move. Both stocks move down. Because the high-
volatility stock moves down much more than the low-
volatility stock, the high-volatility call becomes out of
the money, and the low-volatility call will be exercised.

If now the volatility of the low-volatility stock is increased
by a small amount, then in these scenarios the exercise strategy
remains unchanged. Also, in the case of an up move, the payoff
remains unaltered. In the case of a down move, however, the
low-volatility stock (volatility slightly increased) moves down
more than in the unperturbed case. Therefore, the payoff of the
protection call is reduced. In total, the Bermudan option is thus
worth less.

ENDNOTES

The authors are grateful for the comments of Steffen
Berridge, Nam Kyoo Boots, Dick Boswinkel, Igor Grubisic,
Les Gulko, Karel in 't Hout, Etienne de Klerk, Steffen Lukas,
Michael Monoyios, Maurizio PrateUi, Marcel van Regenmortel,
Kees Roos; and seminar participants at ABN AMRO Bank, the
Blaise Pascal International Conference on Financial Modeling
Paris, Delft University of Technology, Global Finance Con-
ference Frankfurt/Main, and Tilburg University.

'A cotenninal Bermudan swaption is an option to enter
into an underlying swap at several exercise opportunities. The
holder of a Bermudan swaption has the right at each exercise
opportunity to either enter into a swap or hold the option; all
the underlying swaps that may possibly be entered into have the
same ending date.

Ît was verified that the resulting vega is stable for a wide
range of volatility perturbation. For very extreme perturbation,
the vega is unstable. At high levels of perturbation, vega-gamma
terms affect the vega. At too low levels of volatility perturba-
tion, floating point number round-off errors affect the vega.
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