Rank reduction of correlation matrices by majorization

Raoul Pietersz^{1,2,4} and **Patrick J F Groenen**³

 ¹ Erasmus Research Institute of Management, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
 ² Product Development Group (HQ7011), ABN AMRO Bank, P.O. Box 283, 1000 EA Amsterdam, The Netherlands
 ³ Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

E-mail: pietersz@few.eur.nl and groenen@few.eur.nl

Received 18 March 2004, in final form 8 October 2004 Published 18 April 2005 Online at www.tandf.co.uk/journals/titles/14697688.asp DOI:10.1080/14697680400016182

Abstract

A novel algorithm is developed for the problem of finding a low-rank correlation matrix nearest to a given correlation matrix. The algorithm is based on majorization and, therefore, it is globally convergent. The algorithm is computationally efficient, is straightforward to implement, and can handle arbitrary weights on the entries of the correlation matrix. A simulation study suggests that majorization compares favourably with competing approaches in terms of the quality of the solution within a fixed computational time. The problem of rank reduction of correlation matrices occurs when pricing a derivative dependent on a large number of assets, where the asset prices are modelled as correlated log-normal processes. Such an application mainly concerns interest rates.

1. Introduction

In this paper, we study the problem of finding a low-rank correlation matrix nearest to a given (correlation) matrix. First we explain how this problem occurs in an interest rate derivatives pricing setting. We will focus on interest rate derivatives that depend on several rates such as the 1 year LIBOR deposit rate, the 2 year swap rate, etc. An example of such a derivative is a Bermudan swaption. A Bermudan swaption gives its holder the right to enter into a fixed maturity interest rate swap at certain exercise dates. At an exercise opportunity, the holder has to choose between exercising then or hold the option with

⁴ Author to whom any correspondence should be addressed.

the chance of entering into the swap later at more favourable interest rates. Evidently, the value depends not only on the current available swap rate but, amongst others, also on the forward swap rates corresponding to future exercise dates. In contrast, an example of a derivative that is dependent on a single interest rate is a caplet, which can be viewed as a call option on LIBOR. In this case, the value of the caplet depends only on a single forward LIBOR rate.

Here, we will focus on derivatives depending on several rates. Our discussion can, however, also be applied to the situation of a derivative depending on several *assets*. To do so, a model is set up that specifies the behaviour of the asset prices. Each of the asset prices is modelled as a log-normal martingale under its respective forward measure. Additionally, the asset prices are correlated. Suppose we model *n* correlated lognormal price processes,

$$\frac{\mathrm{d}s_i}{s_i} = \dots \mathrm{d}t + \sigma_i \,\mathrm{d}\tilde{w}_i, \quad \langle \mathrm{d}\tilde{w}_i, \mathrm{d}\tilde{w}_j \rangle = r_{ij}, \tag{1}$$

under a single measure. Here, s_i denotes the price of the asset, σ_i its volatility and \tilde{w}_i denotes the associated driving Brownian motion. Brownian motions *i* and *j* are correlated with coefficient r_{ii} , the correlation coefficient between the returns on assets i and j. The matrix $\mathbf{R} = (r_{ij})_{ij}$ should be positive semidefinite and should have a unit diagonal. In other words, R should be a true correlation matrix. The term \dots dt denotes the drift term that stems from the change of measure under the nonarbitrage condition. The models that fit into the framework of (1) and which are most relevant to our discussion are the LIBOR and swap market models for valuation of interest rate derivatives. These models were developed by Brace et al (1997), Jamshidian (1997) and Miltersen et al (1997). In this case, an asset price corresponds to a forward LIBOR or swap rate. For example, if we model a 30 year Bermudan swaption with annual call and payment dates, then our model would consist of 30 annual forward LIBOR rates or 30 co-terminal forward swap rates. In the latter case, we consider 30 forward starting annual-paying swaps, starting at each of the 30 exercise opportunities and all ending after 30 years. Model (1) could, however, also be applied to a derivative depending on a number of stocks, for example.

Given the model (1), the price of any derivative depending on the assets can be calculated by nonarbitrage arguments. Because the number of assets is assumed to be high and the derivative is assumed complex in this exposition, the derivative value can be calculated only by Monte Carlo simulation. To implement scheme (1) by Monte Carlo we need a decomposition $\mathbf{R} = \mathbf{X}\mathbf{X}^{T}$, with \mathbf{X} an $n \times n$ matrix. In other words, if we denote the *i*th row vector of \mathbf{X} by \mathbf{x}_i , then the decomposition reads $\langle \mathbf{x}_i, \mathbf{x}_j \rangle = r_{ij}$, where $\langle \cdot, \cdot \rangle$ denotes the scalar product. We then implement the scheme

$$\frac{\mathrm{d}s_i}{s_i} = \dots \,\mathrm{d}t + \sigma_i \{x_{i1} \,\mathrm{d}w_1 + \dots + x_{in} \,\mathrm{d}w_n\}, \quad \langle \mathbf{x}_i, \mathbf{x}_j \rangle = r_{ij},$$
(2)

where the w_i are now independent Brownian motions. Scheme (2) indeed corresponds to scheme (1) since both volatility and correlation are implemented correctly. The instantaneous variance is $\langle ds_i/s_i \rangle = \sigma_i^2 dt$ since $\|\mathbf{x}_i\| = r_{ii} = 1$ and volatility is the square root of instantaneous variance divided by dt. Moreover, for the instantaneous covariance we have $\langle ds_i/s_i, ds_j/s_j \rangle = \sigma_i \sigma_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle dt = \sigma_i \sigma_j r_{ij} dt$.

For large interest rate correlation matrices, usually almost all variance (say 99%) can be attributed to only three to six stochastic Brownian factors. Therefore, (2) contains a large number of almost redundant Brownian motions that take up expensive computational time to simulate. Instead of taking into account all Brownian motions, we would wish to do the simulation with a smaller number of factors, d say, with d < n and d typically between 2 and 6. The scheme then becomes

$$\frac{\mathrm{d}s_i}{s_i} = \dots \mathrm{d}t + \sigma_i \{ x_{i1} \mathrm{d}w_1 + \dots + x_{id} \mathrm{d}w_d \}, \quad \langle \mathbf{x}_i, \mathbf{x}_j \rangle = r_{ij}.$$

The $n \times d$ matrix **X** is a decomposition of **R**. This approach immediately implies that the rank of \mathbf{R} be less than or equal to d. For financial correlation matrices, this rank restriction is generally not satisfied. It follows that an approximation is required. We could proceed in two possible ways. The first way involves approximating the covariance matrix $(\sigma_i \sigma_j r_{ij})_{ij}$. The second involves approximating the correlation matrix while maintaining an exact fit to the volatilities. In a derivatives pricing setting, the volatilities are usually well known. These can be calculated via a Black-type formula from the European option prices quoted in the market, or mostly these volatilities are directly quoted in the market. The correlation is usually less known and can be obtained in two ways. First, it can be estimated from historical time series. Second, it can be implied from correlation sensitive market-traded options such as spread options. A spread option is an option on the difference between two rates or asset prices. Such correlation sensitive products are not traded as liquidly as the European plainvanilla options. Consequently, in both cases of historic or market-implied correlation, we are more confident of the volatilities. For that reason, in a derivative pricing setting, we approximate the correlation matrix rather than the covariance matrix.

The above considerations lead to solving the following problem:

Find
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
,
to minimize $f(\mathbf{X}) := \frac{1}{c} \sum_{i < j} w_{ij} (r_{ij} - \langle \mathbf{x}_i, \mathbf{x}_j \rangle)^2$, (3)
subject to $\|\mathbf{x}_i\|_2 = 1, \quad i = 1, \dots, n$.

Here w_{ij} are non-negative weights and $c := 4 \sum_{i < j} w_{ij}$. The objective value f is scaled by the constant c in order to make it independent of the problem dimension n. Because each term $r_{ij} - \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ is always between 0 and 2, it follows for the choice of c that f is always between 0 and 1. The weights w_{ij} have been added for three reasons:

- For squared differences, a large difference will be weighted more than a small difference. The weights can then be appropriately changed to adjust for this.
- Financial reasons may sometimes compel us to assign higher weights to particular correlation pairs. For example, we could be more confident about the correlation between the 1 and 2 year swap rates than about the correlation between the 8 and 27 year swap rates.

• The objective function with weights has been considered before in the literature. See, for example, Rebonato (1999b, section 10). Rebonato (2002, section 9) provides an excellent discussion of the pros and cons of using weights.

The simplest case of f is $f(\mathbf{X}) := c^{-1} \|\mathbf{R} - \mathbf{X}\mathbf{X}^{\mathsf{T}}\|_{\mathsf{F}}^{2}$, where $\|\cdot\|_{\mathsf{F}}$ denotes the Frobenius norm, $\|\mathbf{Y}\|_{\mathsf{F}}^{2} := \operatorname{tr}(\mathbf{Y}\mathbf{Y}^{\mathsf{T}})$ for matrices \mathbf{Y} . This objective function (which we shall also call 'Frobenius norm') fits into the framework of (3); it corresponds to the case of all weights equal. The objective function in (3) will be referred to as 'general weights'.

In the literature, there exist five algorithms for minimizing f defined in (3). These methods will be outlined in the next section and will be shown to have several disadvantages, namely none of the methods is simultaneously

- (i) efficient,
- (ii) straightforward to implement,
- (iii) able to handle general weights, and
- (iv) guaranteed to converge to a local minimum.

In this paper, we develop a novel method to minimize f that simultaneously has the four above properties. The method is based on iterative majorization, which has the important property of guaranteed convergence to a stationary point. The algorithm is straightforward to implement. We show that the method can handle general weights efficiently. We investigate empirically the efficiency of majorization in comparison with other methods in the literature. The benchmark tests that we will consider are based on the performance given a fixed small amount of computational time. This is exactly the situation in a finance setting: decisions based on derivative pricing calculations have to be made in a limited amount of time.

The remainder of this paper is organized as follows. First, we provide an overview of the methods available in the literature. Second, the idea of majorization is introduced and the majorizing functions are derived. Third, an algorithm based on majorization is given along with reference to associated MATLAB code. Global convergence and the local rate of convergence are investigated. Fourth, we present empirical results. The paper ends with some conclusions.

2. Literature review

We describe five existing algorithms available in the literature for minimizing *f*. For each algorithm, it is indicated whether it can handle general weights. If not, then the most general objective function it can handle stems from the weighted Frobenius norm $\|\cdot\|_{F,\Omega}$ with Ω a symmetric positive definite matrix, where $\|\mathbf{X}\|_{F,\Omega}^2 := \operatorname{tr}(\mathbf{X}\Omega\mathbf{X}^T\Omega)$. The objective function

 $f(\mathbf{X}) := c^{-1} \|\mathbf{R} - \mathbf{X}\mathbf{X}^{\mathrm{T}}\|_{\mathrm{F}, \Omega}^{2}$ will also be referred to as the 'weighted Frobenius norm'.

First, we mention the 'modified principal component analysis (PCA)' method. For ease of exposition, we restrict ourselves to the case of the Frobenius norm, however the method can be applied to the weighted Frobenius norm as well, though not for general weights. Modified PCA is based on an eigenvalue decomposition $\mathbf{R} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{\mathrm{T}}$, with \mathbf{Q} orthonormal and $\mathbf{\Lambda}$ the diagonal matrix with eigenvalues. If the eigenvalues are ordered descendingly then a low-rank decomposition with associated approximated matrix close to the original matrix is found by

$$\{\mathbf{X}_{\text{PCA}}\}_i = \frac{\mathbf{z}}{\|\mathbf{z}\|_2},\tag{4}$$

$$\mathbf{z} := \{ \mathbf{Q}_d \boldsymbol{\Lambda}_d^{1/2} \}_i, \quad i = 1, \dots, n.$$
 (5)

Here $\{\mathbf{Y}\}_i$ denotes the *i*th row of a matrix \mathbf{Y} , \mathbf{Q}_d the first d columns of \mathbf{Q} , and Λ_d the principal sub-matrix of Λ of degree d. Ordinary PCA stops with (5) and it is the scaling in (4) that is the 'modified' part, ensuring that the resulting correlation matrices have unit diagonal. Modified PCA is popular among financial practitioners and implemented in numerous financial institutions. The modification of PCA in this way is believed to be due to Flury (1988). For a description in a finance-related article, see, for example, Hull and White (2000). Modified PCA is easy to implement, because almost all that is required is an eigenvalue decomposition. The calculation is almost instant, and the approximation is reasonably accurate. A strong drawback of modified PCA is its non-optimality: generally, one may find decompositions X (even locally) for which the associated correlation matrix $\mathbf{X}\mathbf{X}^{\mathrm{T}}$ is closer to the original matrix R than the PCA-approximated correlation matrix $\mathbf{X}_{PCA}\mathbf{X}_{PCA}^{T}$. The modified PCA approximation becomes worse when the magnitude of the omitted eigenvalues increases.

The second algorithm that we discuss is the geometric programming approach of Grubišić and Pietersz (2004). Here, the constraint set is equipped with a differentiable structure. Subsequently, geometric programming is applied, which can be seen as Newton-Rhapson or conjugate gradient over curved space. By formulating these algorithms entirely in terms of differential geometric means, a simple expression is obtained for the gradient. The latter allows for an efficient implementation. Until now the geometric programming approach has been shown empirically to be the most efficient algorithm for finding the nearest low-rank correlation matrix, see Grubišić and Pietersz (2004, section 6). This result was obtained in a particular numerical setting with a large number of randomly generated correlation matrices. Another advantage of geometric programming is that it can handle general weights. However, a drawback of the geometric programming approach is that it takes many lines of non-straightforward code to implement, which may hinder its use for non-experts.

As the third algorithm, we mention the Lagrange multiplier technique developed by Zhang and Wu (2003) and Wu (2003). This method lacks guaranteed convergence: Zhang and Wu (2003, proposition 4.1) prove the following result. The Lagrange multiplier algorithm produces a sequence of multipliers for which accumulation points exist. If, for the original matrix plus the Lagrange multipliers of an accumulation point, the dth and (d+1)th eigenvalues have different absolute values, then the resulting rank-d approximation is a global minimizer of problem (3). However, the condition that the dth and (d + 1)th eigenvalues are different has not been guaranteed. This equal-eigenvalues phenomenon occurs in numerical experiments. Therefore, convergence of the Lagrange multiplier method to a global minimum or even to a stationary point is not guaranteed. It is beyond the scope of this paper to indicate how often this 'non-convergence' occurs. If the algorithm has not yet converged, then the produced low-rank correlation matrix will not satisfy the diagonal constraint. The appropriate adaptation is to re-scale the associated configuration similarly to the modified PCA approach (4). For certain numerical settings, the resulting algorithm has been shown to perform no better and even worse than the geometric programming approach of Grubišić and Pietersz (2004). Another drawback of the Lagrange multiplier algorithm is that only the weighted Frobenius norm can be handled and not general weights.

Fourth, we mention the 'parametrization method' of Rebonato (1999a), Rebonato (1999b, section 9), Brigo (2002), Rapisarda et al (2002) and Rebonato (2002, section 9). In this method, each row vector of the $n \times d$ configuration matrix X is parameterized by spherical Subsequently, nonlinear programming coordinates. algorithms such as Newton-Rhapson or conjugate gradient are applied on the 'parameter' or 'angle' space. In essence, this approach is the same as the geometric programming approach, bar the fundamental difference in the choice of coordinates. The parametrization by spherical coordinates implies that the objective function is given in terms of trigonometric sin and cos functions. In turn, these yield a computational burden when calculating the derivative, which hinders an efficient implementation. Grubišić and Pietersz (2004, section 6) have shown, empirically for a particular numerical setting with many randomly generated correlation matrices, that the parametrization method is numerically less efficient than either the geometric programming approach or the Lagrange multiplier approach. The parametrization approach can handle general weights.

Fifth, we mention the alternating projections method, which can only be used when there are no rank restrictions (d := n) and only with the weighted Frobenius norm. To understand the methodology, note that minimization problem (3) with equal weights and d := n can be written as min{ $\|\mathbf{R} - \mathbf{C}\|_{\mathrm{F}}^2$; $\mathbf{C} \succeq 0$, diag (C) = I}. The two constraint sets $\{C \succeq 0\}$ and $\{\text{diag}(C) = I\}$ are both convex. The convexity was cleverly exploited by Higham (2002), who showed that the alternating projections algorithm of Dykstra (1983) and Han (1988) could be applied. The same technique has been applied in a different context by Chu et al (2003), Glunt et al (1990), Hayden and Wells (1988) and Suffridge and Hayden (1993). The alternating projections algorithm could, in principle, be extended to the case with rank restrictions, since we can efficiently calculate the projection onto the set of rank-d matrices. Convergence of the algorithm is, however, no longer guaranteed by the general results of Dykstra (1983) and Han (1988) because the constraint set $\{\operatorname{rank}(\mathbf{C}) \le d\}$ is no longer convex for $d \le n$. Some preliminary experimentation indeed showed that extension to the non-convex case did not work generally. Higham (2002, section 5, 'Concluding remarks') mentions that he has been investigating alternative algorithms so as to include rank constraints.

Since the case d < n is the primary interest of this paper, the alternating projections method will not be considered in the remainder. Throughout this article we choose the starting point of any method considered (beyond modified PCA) to be the modified PCA solution.

3. Majorization

In this section, we briefly describe the idea of majorization and apply majorization to the objective function f of problem (3). The idea of majorization has been described, amongst others, by De Leeuw and Heiser (1977), Kiers and Groenen (1996) and Kiers (2002). We follow here the lines of Borg and Groenen (1997, section 8.4). The key to majorization is to find a simpler function that has the same function value at a supporting point y and anywhere else is larger than or equal to the objective function to be minimized. Such a function is called a *majorization function*. By minimizing the majorization function-which is an easier task since this function is 'simpler'-we obtain the next point of the algorithm. This procedure guarantees that the function value never increases along points generated by the algorithm. Moreover, if the objective and majorization functions are once continuously differentiable (which turns out to hold in our case), then the properties above imply that the gradients should match at the supporting point y. As a consequence, from any point where the gradient of the objective function is non-negligible, iterative majorization will be able to find the next point with a strictly smaller objective function value. This generic fact for majorization algorithms has been pointed out by Heiser (1995).

We formalize the procedure somewhat more. Let $f(\cdot)$ denote the function to be minimized. Let for each y in the

Figure 1. The idea of majorization. (Figure adapted from Borg and Groenen (1997, figure 8.4).) The algorithm sets out at \mathbf{x}_0 . The majorization function $g(\cdot, \mathbf{x}_0)$ is fitted by matching the value and first derivative of $f(\cdot)$ at \mathbf{x}_0 . Subsequently, the function $g(\cdot, \mathbf{x}_0)$ is minimized to find the next point \mathbf{x}_1 . This procedure is repeated to find the point \mathbf{x}_2 , etc.

domain of f be given a majorization function $g(\cdot, \mathbf{y})$ such that

(i) $f(\mathbf{x}) = g(\mathbf{x}, \mathbf{x}),$

- (ii) $f(\mathbf{x}) \leq g(\mathbf{x}, \mathbf{y})$ for all \mathbf{x} , and
- (iii) the function $g(\cdot, \mathbf{y})$ is 'simple', that is, it is straightforward to calculate the minimum of $g(\cdot, \mathbf{y})$.

A majorization algorithm is then given by

- (i) Start at $x^{(0)}$. Set k := 0.
- (ii) Set $\mathbf{x}^{(k+1)}$ equal to the minimum argument of the function $g(\cdot, \mathbf{x}^{(k)})$.
- (iii) If $f(\mathbf{x}^{(k)}) f(\mathbf{x}^{(k+1)}) < \varepsilon$ then stop with $\mathbf{x} := \mathbf{x}^{(k+1)}$.
- (iv) Set k := k + 1 and repeat from (ii).

Figure 1 illustrates the majorization algorithm.

Below we derive the majorizing function for $f(\cdot)$ in (3). The first step is to majorize $f(\mathbf{X})$ as a function of the *i*th row only and then to repeat this for each row. To formalize the notion of ' $f(\mathbf{X})$ as a function of the *i*th row only' we introduce the notation $f_i(\mathbf{x}; \mathbf{X})$ to denote the function

$$f_i(\cdot, \mathbf{X}) : \mathbf{x} \mapsto f(\hat{\mathbf{X}}_i(\mathbf{x}))$$

for (column)vectors $\mathbf{x} \in \mathbb{R}^d$ with $\hat{\mathbf{X}}_i(\mathbf{x})$ denoting the matrix \mathbf{X} with the *i*th row replaced by \mathbf{x}^T . Note that we interpret \mathbf{X} ; as $[\mathbf{x}_1 \cdots \mathbf{x}_n]^T$. We find

$$f(\mathbf{X}) = \frac{1}{c} \sum_{j_1 < j_2} w_{j_1 j_2} (r_{j_1 j_2} - \langle \mathbf{x}_{j_1}, \mathbf{x}_{j_2} \rangle)^2$$

= $\frac{1}{c} \sum_{j_1 < j_2} w_{j_1 j_2} (r_{j_1 j_2}^2 + (\mathbf{x}_{j_1}^T \mathbf{x}_{j_2})^2 - 2r_{j_1 j_2} \mathbf{x}_{j_1}^T \mathbf{x}_{j_2}) = (\text{const in } \mathbf{x}_i)$
+ $\frac{1}{c} \left\{ \underbrace{\mathbf{x}_i^T \left[\sum_{j: j \neq i} w_{ij} \mathbf{x}_j \mathbf{x}_j^T \right] \mathbf{x}_i}_{(I)} - \underbrace{2\mathbf{x}_i^T \left[\sum_{j: j \neq i} w_{ij} r_{ij} \mathbf{x}_j \right]}_{(II)} \right\}.$ (6)

Part (I) is quadratic in \mathbf{x}_i , whereas part (II) is linear in \mathbf{x}_i ; the remaining term is constant in \mathbf{x}_i . We only have to majorize part (I), as follows. Define

$$\mathbf{B}_{i}(\mathbf{X}) := \sum_{j:j \neq i} w_{ij} \mathbf{x}_{j} \mathbf{x}_{j}^{\mathrm{T}}.$$
(7)

For notational convenience, we shall denote $\mathbf{B}_i(\mathbf{X})$ by \mathbf{B} , the running \mathbf{x}_i by \mathbf{x} , and the current \mathbf{x}_i , that is, the current *i*th row vector of \mathbf{X} , is denoted by \mathbf{y} . Let λ denote the largest eigenvalue of \mathbf{B} . Then, the matrix $\mathbf{B} - \lambda \mathbf{I}$ is negative semidefinite, so that the following inequality holds:

$$(\mathbf{x} - \mathbf{y})^{\mathrm{T}} (\mathbf{B} - \lambda \mathbf{I}) (\mathbf{x} - \mathbf{y}) \le 0, \quad \forall \mathbf{x},$$

which gives, after manipulation,

$$\mathbf{x}^{\mathrm{T}}\mathbf{B}\mathbf{x} \leq 2\lambda - 2\mathbf{x}^{\mathrm{T}}(\lambda\mathbf{y} - \mathbf{B}\mathbf{y}) - \mathbf{y}^{\mathrm{T}}\mathbf{B}\mathbf{y}, \quad \forall \mathbf{x},$$
 (8)

using the fact that $\mathbf{x}^{\mathrm{T}}\mathbf{x} = \mathbf{y}^{\mathrm{T}}\mathbf{y} = 1$.

Combining (6) and (8) we obtain the majorizing function of $f_i(\mathbf{x}; \mathbf{X})$, that is

$$f_i(\mathbf{x}; \mathbf{X}) \le -\frac{2}{c} \mathbf{x}^{\mathrm{T}} \left(\lambda \mathbf{y} - \mathbf{B} \mathbf{y} + \sum_{j:i \neq j} w_{ij} r_{ij} \mathbf{x}_j \right) + (\text{const in } \mathbf{x}) \\ = g_i(\mathbf{x}; \mathbf{X}), \quad \forall \mathbf{x}$$

The advantage of $g_i(\cdot; \mathbf{X})$ over $f_i(\cdot, \mathbf{X})$ is that it is linear in \mathbf{x} and that the minimization problem

$$\min\{g_i(\mathbf{x}; \mathbf{X}); \|\mathbf{x}\|_2 = 1\}$$
(9)

is readily solved by

$$\mathbf{x}^* := \mathbf{z}/\|\mathbf{z}\|_2, \quad \mathbf{z} := \lambda \mathbf{y} - \mathbf{B}\mathbf{y} + \sum_{j:j \neq i} w_{ij} r_{ij} \mathbf{x}_j.$$

If $\mathbf{z} = 0$ then this implies that the gradient is zero, from which it would follow that the current point \mathbf{y} is already a stationary point.

4. The algorithm and convergence analysis

Majorization algorithms are known to converge to a point with negligible gradient. This property holds also for the current situation, as will be shown below. As the convergence criterion is defined in terms of the gradient ∇f , an expression for ∇f is needed. We restrict ourselves to the case of all w_{ij} equal. As shown by Grubišić and Pietersz (2004), the gradient is then given by

$$\nabla f = 4c^{-1}\Psi \mathbf{X}, \quad \Psi := \mathbf{X}\mathbf{X}^{\mathrm{T}} - \mathbf{R}.$$
(10)

An expression for the gradient for the objective function with general weights can be found by straightforward differentiation. The majorization algorithm has been displayed in algorithm 1.

The row-wise approach of algorithm 1 makes it dependent on the order of looping through the rows.

Algorithm 1 The majorization algorithm for finding a low-rank correlation matrix locally nearest to a given matrix. Here, **R** denotes the input matrix, **W** denotes the weight matrix, *n* denotes its dimension, *d* denotes the desired rank, $\varepsilon_{\parallel \nabla f \parallel}$ is the convergence criterion for the norm of the gradient and ε_f is the convergence criterion on the improvement in the function value.

Input: R , W , <i>n</i> , <i>d</i> , $\varepsilon_{\parallel \nabla f \parallel}$, ε_{f} .
1: Find starting point X by means of the modified PCA method (4) and (5).
2: for $k = 0, 1, 2, \dots$ do
3: stop if the norm of the gradient of f at $\mathbf{X}^{(k)} := \mathbf{X}$ is less than $\varepsilon_{\parallel \mathbf{V} f \parallel}$ and the improvement in the function value
$f_{k-1}/f_k - 1$ is less than ε_f .
4: for $i = 1, 2,, n$ do
5: Set $\mathbf{B} := \sum_{i \neq i} w_{ii} \mathbf{x}_i \mathbf{x}_i^{\mathrm{T}}$.
6: Calculate $\overline{\lambda}$ to be the largest eigenvalue of the $d \times d$ matrix B .
7: Set $\mathbf{z} := \lambda \mathbf{x}_i - \mathbf{B} \mathbf{x}_i + \sum_{i \neq i} w_{ii} r_{ij} \mathbf{x}_i$.
8: If $\mathbf{z} \neq 0$, then set the <i>i</i> th row \mathbf{x}_i of X equal to $\mathbf{z}/\ \mathbf{z}\ _2$.
9: end for
10: end for
Output: the $n \times n$ matrix XX ^T is the rank- <i>d</i> approximation of R satisfying the convergence constraints.

This order effect will be addressed in section 5.3. In sections 5.4 and 5.5 we study different ways of implementing the calculation of the largest eigenvalue of **B** in line 6 of algorithm *I*. In particular, we study the use of the power method.

In the remainder of this section the convergence of algorithm l is studied. First, we establish global convergence of the algorithm. Second, we investigate the local rate of convergence.

4.1. Global convergence

Zangwill (1969) developed generic sufficient conditions that guarantee convergence of an iterative algorithm. The result is repeated here in a form adapted to the case of majorization. Let M be a compact set. Assume the specification of a subset $S \subset M$ called the *solution set*. A point $Y \in S$ is deemed a *solution*. An *(autonomous) iterative algorithm* is a map $A: M \to M \cup \{\text{stop}\}$ such that $A^{-1}(\{\text{stop}\}) = S$. The proof of the following theorem is adapted from the proof of theorem 1 of Zangwill (1969).

Theorem 1 (Global convergence). Consider finding a local minimum of the objective function $f(\mathbf{X})$ by use of algorithm 1. Suppose we are given a fixed tolerance level ε on the gradient of f. A point \mathbf{X} is called a solution if $\|\nabla f(\mathbf{X})\| < \varepsilon$. Then from any starting point $\mathbf{X}^{(0)}$, the algorithm either stops at a solution or produces an infinite sequence of points, none of which are solutions, for which the limit of any convergent subsequence is a solution point.

Proof. Without loss of generality we may assume that the procedure generates an infinite sequence of points $\{\mathbf{X}^{(k)}\}$, none of which are solutions. It remains to be proven that the limit of any convergent subsequence must be a solution.

First, note that the algorithm $A(\cdot)$ is continuous in **X**. Second, note that if \mathbf{X}^k is not a solution then

$$f(\mathbf{X}^{(k+1)}) = f(A(\mathbf{X}^{(k)})) < f(\mathbf{X}^{(k)}).$$

Namely, if $\mathbf{X}^{(k)}$ is not a solution then its gradient is nonnegligible. Since the objective and all majorization functions are differentiable, we necessarily have that the gradients agree at $\mathbf{X}^{(k)}$. Therefore, when minimizing the majorization functions $g_i(\cdot, \mathbf{X})$ there will be at least one *i* for which we find a strictly smaller objective value. Thus $\mathbf{X}^{(k+1)} := A(\mathbf{X}^{(k)})$ has a strictly smaller objective function value than $\mathbf{X}^{(k)}$. Third, note that the sequence $\{f(\mathbf{X}^{(k)})\}_{k=0}^{\infty}$ has a limit since it is monotonically decreasing and bounded from below by 0.

Let $\{\mathbf{X}^{(k_j)}\}_{j=1}^{\infty}$ be any subsequence that converges to \mathbf{X}^* , say. It must be shown that \mathbf{X}^* is a solution. Assume the contrary. By continuity of the iterative procedure, $A(\mathbf{X}^{(k_j)}) \rightarrow A(\mathbf{X}^*)$. By the continuity of $f(\cdot)$, we then have

$$f(A(\mathbf{X}^{(k_j)})) \downarrow f(A(\mathbf{X}^*)) < f(\mathbf{X}^*),$$

which is in contradiction with $f(A(\mathbf{X}^{(k_j)})) \rightarrow f(\mathbf{X}^*)$. \Box

The algorithm thus converges to a point with vanishing first derivative. We expect such a point to be a local minimum, but, in principle, it may also be a stationary point. In practice, however, we almost always obtain a local minimum, except for very rare degenerate cases. Moreover, global convergence to a point with zero first derivative is the best one may expect from generic optimization algorithms. For example, the globally convergent version of the Newton–Rhapson algorithm may also converge to a stationary point: applied to the function $f(x, y) = x^2 - y^2$, it will converge to the stationary point (0,0) starting from any point on the line $\{y = 0\}$.

4.2. Local rate of convergence

The local rate of convergence determines the speed at which an algorithm converges to a solution point in the neighbourhood thereof. Let $\mathbf{X}^{(k)}$ be a sequence of points produced by an algorithm converging to a solution point $\mathbf{X}^{(\infty)}$. Suppose, for *k* large enough,

$$\|\mathbf{X}^{(k+1)} - \mathbf{X}^{(\infty)}\| \le \alpha \|\mathbf{X}^{(k)} - \mathbf{X}^{(\infty)}\|^{\zeta}.$$
 (11)

If $\zeta = 1$ and $\alpha < 1$ or if $\zeta = 2$ the local convergence is called *linear* or *quadratic*, respectively. If the convergence estimate is worse than linear, the convergence is deemed *sub-linear*. For linear convergence, α is called the linear rate of convergence.

When considering several algorithms and indefinite iteration, the algorithm with best rate of convergence will eventually provide the best result. Among the algorithms available in the literature, both the geometric programming and parametrization approach can have a quadratic rate of convergence given that a Newton-Rhapson-type algorithm is applied. As the proposition below will show, algorithm 1 has a sub-linear local rate of convergence, that is, worse than a linear rate of convergence. Thus the majorization algorithm makes no contribution to the existing literature for the case of indefinite iteration. However, we did not introduce the majorization algorithm for the purpose of indefinite iteration, but rather for calculating a reasonable answer in limited time, as is the case in practical applications of financial institutions. Given a fixed amount of time, the performance of an algorithm is a trade-off between rate of convergence and computational cost per iterate. Such performance can almost invariably only be measured by empirical investigation, and the results of the next section on numerical experiments indeed show that majorization is the bestperforming algorithm in a number of financial settings. The strength of majorization lies in the low costs of calculating the next iterate.

The next proposition establishes the local sub-linear rate of convergence.

Proposition 1 (local rate of convergence). Algorithm 1 has, locally, a sub-linear rate of convergence. More specifically, let $\{\mathbf{X}^{(k)}\}$ denote the sequence of points generated by algorithm 1 converging to the point $\mathbf{X}^{(\infty)}$. Define $\delta^{(k,i)} = \|\mathbf{x}_i^{(k)} - \mathbf{x}_i^{(\infty)}\|$. Then

$$\delta^{(k+1,i)} = \delta^{(k,i)} + \mathcal{O}((\delta^{(k,i)})^2).$$
(12)

Proof. The proof of equation (12) may be found in appendix A. Equation (12) can be written as $\delta^{(k+1,i)} = \alpha(\delta^{(k,i)})\delta^{(k,i)}$ with $\alpha(\delta^{(k,i)}) \to 1$ as $k \to \infty$. It follows that the convergence-type defining equation (11) holds, for algorithm 1, with $\zeta = 1$, but for $\alpha = 1$ and not for any $\alpha < 1$. We may conclude that the local convergence is worse than linear, thus sub-linear.

5. Numerical results

In this section, we study and assess the performance of the majorization algorithm in practice. First, we numerically compare majorization with other methods in the literature. Second, we present an example with nonconstant weights. Third, we explain and investigate the order effect. Fourth and fifth, we consider and study alternative versions of the majorization algorithm.

Algorithm 1 has been implemented in a MATLAB package called major. It can be downloaded from www. few.eur.nl/few/people/pietersz. The package consists of the following files: clamp.m, dF.m, F.m, grad.m, guess.m, major.m, P_tangent.m and The package can be run by calling svdplus.m. [Xn, Fn] = major(R, d, ftol, gradtol). Here R denotes the input correlation matrix, d the desired rank, Xn the final configuration matrix, Fn denotes the final objective function value, ftol the convergence tolerance on the improvement of f, and gradtol the convergence tolerance on the norm of the gradient. The aforementioned web-page also contains a package majorw that implements non-constant weights for the objective function f.

5.1. Numerical comparison with other methods

The numerical performance of the majorization algorithm was compared with the performance of the Lagrange multiplier method, geometric programming⁵ and the parametrization method. Additionally, we considered the function fmincon available in the MATLAB optimization toolbox. MATLAB refers to this function as a 'medium-scale constrained nonlinear program'.

We have chosen to benchmark the algorithms by their practical importance, that is the performance under a fixed small amount of computational time. In financial applications, rank reduction algorithms are usually run for a very short time, typically 0.05–2 s, depending on the size of the correlation matrix. We investigate which method produces, in this limited amount of time, the best fit to the original matrix.

The five algorithms were tested on random 'interest rate' correlation matrices that are generated as follows. A parametric form for correlation matrices is posed by De Jong *et al* (2004) (equation (8)). We repeat here the parametric form for completeness, that is

$$r_{ij} = \exp\left\{-\gamma_1 |t_i - t_j| - \frac{\gamma_2 |t_i - t_j|}{\max(t_i, t_j)^{\gamma_3}} - \gamma_4 |\sqrt{t_i} - \sqrt{t_j}|\right\},$$
(13)

with $\gamma_1, \gamma_2, \gamma_4 > 0$ and with t_i denoting the expiry time of rate *i* (our particular choice is $t_i = i, i = 1, 2, ...$). This model was then subsequently estimated with USD historical interest rate data. The estimated γ parameters are listed in table 3 of De Jong *et al* (2004), along with their standard errors. A part of this table is displayed in table 1. The random financial matrix that we used is obtained by randomizing the γ parameters in (13). We assumed the γ parameters distributed normally with

⁵ For geometric programming we used the MATLAB package LRCM MIN downloadable from www.few.eur.nl/few/people/pietersz. The Riemannian Newton-algorithm was applied.

mean and standard errors given by table 1, with $\gamma_1, \gamma_2, \gamma_4$ capped at zero.

One hundred matrices were randomly generated, with *n*, *d*, and the computational time *t* varied as (n = 10,d = 2, t = 0.05 s), (n = 20, d = 4, t = 0.1 s) and (n = 80, t = 0.1)d = 20, t = 2 s). Subsequently, the five algorithms were applied, each with ts of computational time and the computational time constraint was the only stopping criterion. The results have been presented in the form of performance profiles, as described by Dolan and Moré (2002). The reader is referred there for the merits of using performance profiles. These profiles are an elegant way of presenting performance data across several algorithms, allowing for insight into the results. We briefly describe the workings here. We have 100 test correlation matrices p = 1, ..., 100 and five algorithms s = 1, ..., 5. The outcome of algorithm s on problem p is denoted by $\mathbf{X}^{(p,s)}$. The *performance measure* of algorithm *s* is defined to be $f(\mathbf{X}^{(p,s)})$. The performance ratio $\rho^{(p,s)}$ is

$$\rho^{(p,s)} = \frac{f(\mathbf{X}^{(p,s)})}{\min_s \{f(\mathbf{X}^{(p,s)})\}}$$

The cumulative distribution function Φ^s of the ('random') performance ratio $p \mapsto \rho^{(p, s)}$ is then called the *performance profile*,

$$\Phi^{(s)}(\tau) = \frac{1}{100} \#\{\rho^{(p,s)} \le \tau; \ p = 1, \dots, 100\}.$$

Table 1. Part of table 3 of De Jong et al (2004).

	γ_1	γ_2	γ3	γ_4
Estimate	0.000	0.480	1.511	0.186
Standard error		0.099	0.289	0.127

The profiles are displayed in figures 2, 3, and 4. From the performance profiles we may deduce that majorization is the best overall performing algorithm in the numerical cases studied.

The tests were also run with a strict convergence criterion on the norm of the gradient. Because the Lagrange multiplier algorithm has not been guaranteed to converge to a local minimum, we deem an algorithm not to have converged after 30s of CPU time. The majorization algorithm still performs very well, but geometric programming and the Lagrange multiplier method perform slightly better when running up to convergence. This can be expected from the sub-linear rate of convergence of majorization versus the quadratic rate of convergence of the geometric programming approach. The results have not been displayed since these are not relevant in a finance setting. In financial practice, no additional computational time will be invested to obtain convergence up to machine precision. Having found that majorization is the most efficient algorithm in a finance setting for the numerical cases considered, with the tests of running to convergence we warn the reader when using algorithm 1 in applications outside of finance where convergence to machine precision is required. For such non-finance applications, we would suggest a mixed approach: use majorization in an initial stage and finish with geometric programming. It is the low cost per iterate that makes majorization so attractive in a finance setting.

To assess the quality of the solutions found in figures 2–4 we checked whether the matrices produced by the algorithms were converging to a global minimum. Here, we have the special case (only for equal weights) that we can check for a global minimum, although in other minimization problems it may be difficult to assess

Figure 2. Performance profile for n = 10, d = 2, t = 0.05 s.

Figure 3. Performance profile for n = 20, d = 4, t = 0.1 s.

Figure 4. Performance profile for n = 80, d = 20, t = 2 s.

whether a minimum is global or not. For clarity, we point out that the majorization algorithm does not have guaranteed convergence to the *global* minimum, nor do any of the other algorithms described in section 2. We only have guaranteed convergence to a point with vanishing first derivative, and in such a point we can *verify* whether that point is a global minimum. If a produced solution satisfies a strict convergence criterion on the norm of the gradient, then it is checked whether such a stationary point is a global minimum by inspecting the Lagrange multipliers, see Zhang and Wu (2003), Wu (2003) and Grubišić and Pietersz (2004, lemma 12). The reader is referred there for details, but we briefly describe the basic result here. Suppose **X** is a stationary point, that is with negligible gradient. Define the Lagrange multipliers Γ by the diagonal matrix

 Table 2. Comparative results of the parametrization and majorization algorithms for the example described in Rebonato (2002, section 9.3.1).

d	$\ \nabla f\ _{\mathrm{F}}$ major.	f major.	f Rebonato	Ι	II	CPU major. (s)
2 3 4	$2 \times 10^{-17} 2 \times 10^{-17} 2 \times 10^{-17} $	$5.131 \times 10^{-04} \\ 1.26307 \times 10^{-04} \\ 4.85 \times 10^{-05}$	$5.137 \times 10^{-04} 1.26311 \times 10^{-04} 4.86 \times 10^{-05} $	$\begin{array}{c} 41 \times 10^{-04} \\ 15 \times 10^{-04} \\ 70 \times 10^{-04} \end{array}$	$\begin{array}{c} 0.02\times 10^{-04} \\ 0.01\times 10^{-04} \\ 0.01\times 10^{-04} \end{array}$	0.4 1.0 2.1

 $\Gamma = \text{diag}(\Psi X X^T)$, with Ψ as in (10). Then Grubišić and Pietersz (2004, lemma 12) how that $X X^T$ and $R + \Gamma$ have a joint eigenvalue decomposition

$$\mathbf{R} + \mathbf{\Gamma} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathrm{T}}, \quad \mathbf{X} \mathbf{X}^{\mathrm{T}} = \mathbf{Q} \mathbf{\Lambda}^* \mathbf{Q}^{\mathrm{T}},$$

where Λ^* can be obtained by selecting, at most, *d* nonnegative entries from Λ . Here, if an entry is selected it retains the corresponding position in the matrix. If now Λ^* contains the largest *d* non-negative entries from Λ then **X** is not only a stationary point, but also a global minimizer of problem (3). We reiterate that this result holds only for the case of equal weights.

The percentage of matrices that were deemed global minima was between 95% and 100% for both geometric programming and majorization, respectively, for the cases n=20, d=4 and n=10, d=2. The Lagrange multiplier and parametrization methods did not produce any stationary points within 20s of computational time. The percentage of global minima is high since the eigenvalues of financial correlation matrices are rapidly decreasing. In effect, there are large differences between the first four or five consecutive eigenvalues. For the case n=80, d=20 it was more difficult to check the global minimum criterion since subsequent eigenvalues are smaller and closer to each other. In contrast, if we apply the methods for all cases to the random correlation matrices of Davies and Higham (2000), for which the eigenvalues are all very similar, we find that a much lower percentage of produced stationary points were global minima.

5.2. Non-constant weights

We consider the example with non-constant weights described by Rebonato (2002, section 9.3), in which a functional form for the correlation matrix is specified, that is

$$r_{ij} = \text{LongCorr} + (1 - \text{LongCorr})$$
$$\times \exp\{-\beta |t_i - t_j|\}, \quad i, j = 1, \dots, n.$$

The parameters are set to n = 10, LongCorr = 0.6, $\beta = 0.1$, $t_i = i$. Subsequently, Rebonato presents the rank 2, 3, and 4 matrices found by the parametrization method for the case of equal weights. The majorization algorithm was also applied and its convergence criterion was set to machine precision for the norm of the gradient.

Comparative results for the parametrization and majorization algorithms are displayed in table 2. Columns I and II denote $\|\mathbf{R}_{Reb}^{Approx} - \mathbf{R}_{major}^{Approx}\|_{F}$ and $\|\mathbf{R}_{major,rounded}^{Approx} - \mathbf{R}_{major}^{Approx}\|_{F}$, respectively. Here 'Approx' stands for the rankreduced matrix produced by the algorithm and 'rounded' stands for rounding the matrix after six digits, as is the precision displayed in Rebonato (2002). Columns I and II show that the matrices displayed in Rebonato (2002) are not yet fully converged up to machine precision, since the round-off error from displaying only six digits is much smaller than the error in obtaining full convergence to the stationary point.

Rebonato proceeds by minimizing f for rank 3 with two different weights matrices. These weights matrices are chosen by financial arguments specific to a ratchet cap and a trigger swap, which are interest rate derivatives. The weights matrix $\mathbf{W}^{(R)}$ for the ratchet cap is a tridiagonal matrix,

$$w_{ij}^{(R)} = 1$$
 if $j = i - 1, i, i + 1, \quad w_{ij}^{(R)} = 0$, otherwise,

and the weights matrix $\mathbf{W}^{(T)}$ for the trigger swap has ones on the first two rows and columns

$$w_{ij}^{(T)} = 1$$
 if $i = 1, 2$ or $j = 1, 2, \quad w_{ij}^{(T)} = 0$, otherwise.

Rebonato subsequently presents the solution matrices found by the parametrization method. These solutions exhibit a highly accurate yet non-perfect fit to the relevant portions of the correlation matrices. In contrast, majorization finds exact fits. The results are displayed in table 3.

5.3. The order effect

The majorization algorithm is based on sequentially looping over the rows of the matrix **X**. In algorithm I, the row index runs from 1 to n. There is, however, no distinct reason to start with row 1, then 2, etc. It would be equally reasonable to consider any permutation p of the numbers $\{1, \ldots, n\}$ and then let the row index run as $p(1), p(2), \ldots, p(n)$. A priori, there is nothing to guarantee or prevent that the resulting solution point produced with permutation p would differ from or be equal to the solution point produced by the default loop $1, \ldots, n$. This dependency of the order is termed 'the order effect'. The order effect is a bad feature of algorithm I in general. We show empirically that the solutions produced by the

Table 3.	Results for the	e ratchet ca	ap and 1	trigger sv	wap. H	lere 'Tar	.' denotes	the targ	get value,	'Maj.'	and	'Reb.'	denote	the 1	resulting
	value	obtained	by the 1	najoriza	tion alg	gorithm	and Rebo	nato (20	02, section	on 9.3)	, resp	pectivel	y.		

Ratchet	cap				20					
First pri	incipal sub-dia	agonal; CPU	time major 2.	.8 s; obtained	$f < 2 \times 10^{-30}$					
Tar.	0.961935	0.961935	0.961935	0.961935	0.961935	0.961935	0.961935	0.961935	0.961935	
Maj.	0.961935	0.961935	0.961935	0.961935	0.961935	0.961935	0.961935	0.961935	0.961935	
Reb.	0.961928	0.961880	0.961977	0.962015	0.962044	0.962098	0.961961	0.961867	0.962074	
Trigger	swap									
First tw	o rows (or eq	uivalently firs	t two column	s); CPU time	major 2.4 s; o	obtained $f < 2$	2×10^{-30}			
Row 1 (without the u	nit entry (1,1))							
Tar.	0.961935	0.927492	0.896327	0.868128	0.842612	0.819525	0.798634	0.779732	0.762628	
Maj.	0.961935	0.927492	0.896327	0.868128	0.842612	0.819525	0.798634	0.779732	0.762628	
Reb.	0.961944	0.927513	0.896355	0.868097	0.842637	0.819532	0.798549	0.779730	0.762638	
Row 2 (Row 2 (without the unit entry (2,2))									
Tar.	0.961935	0.961935	0.927492	0.896327	0.868128	0.842612	0.819525	0.798634	0.779732	
Maj.	0.961935	0.961935	0.927492	0.896327	0.868128	0.842612	0.819525	0.798634	0.779732	
Reb.	0.961944	0.962004	0.927565	0.896285	0.868147	0.842650	0.819534	0.798669	0.779705	
Maj. Reb.	0.961935 0.961944	$0.961935 \\ 0.962004$	0.927492 0.927565	0.896327 0.896285	$0.868128 \\ 0.868147$	$0.842612 \\ 0.842650$	0.819525 0.819534	$0.798634 \\ 0.798669$	0.779732 0.779705	

algorithm can differ when using a different permutation. However, we show that this is unlikely to happen for financial correlation matrices. The order effect can have two consequences. First, the produced solution correlation matrix can differ—this generally implies a different objective function value as well. Second, even when the produced solution correlation matrix is equal, the configuration **X** can differ—in this case we have equal objective function values. To see this, consider an $n \times d$ configuration matrix **X** and assume given any orthonormal $d \times d$ matrix **Q**, that is, $\mathbf{QQ}^{T} = \mathbf{I}$. Then the configuration matrices **X** and **XQ** are associated with the same correlation matrices⁶: $\mathbf{XQQ}^{T}\mathbf{X} = \mathbf{XX}^{T}$.

We investigated the order effect for algorithm *1* numerically, as follows. We generated either a random matrix by (13), see section 5.1, or a random correlation matrix in MATLAB by

The random correlation matrix generator gallery ('randcorr', n) has been described by Davies and Higham (2000). Subsequently, we generated 100 random permutations with p=randperm(n);. For each of the permutations, algorithm I was applied with d=2 and a high accuracy was demanded: $\varepsilon_{\parallel}\nabla f_{\parallel} = \varepsilon_f = 10^{-16}$. The results for the two different correlation matrices are as follows.

Random interest rate correlation matrix as in (13). Only one type of produced solution correlation matrix could be distinguished, which turned out to be a global minimum by inspection of the Lagrange multipliers. We also investigated the orthonormal transformation effect. For \mathbb{R}^2 , an orthonormal transformation can be char-

Table 4. The order effect. Here n = 30, d = 2 and 100 random permutations were applied. Four types of produced correlation matrices could be distinguished. The table displays the

associated j and frequency.									
Туре	Ι	Ι	III	IV					
<i>f</i> Frequency	0.110423 2%	0.110465 88%	0.110630 7%	0.110730 3%					

acterized by the rotation of the two basis vectors and then by -1 or +1 denoting whether the second basis vector is reflected in the origin or not. All produced matrices **X** were differently rotated, but no reflection occurred. The maximum rotation was equal to 0.8° and the standard deviation of the rotation was 0.2° .

Davies and Higham (2000) random correlation matrix. Essentially four types of produced solution correlation matrices could be distinguished, which we shall name I, II, III, and IV. The associated objective function values and the frequency at which the types occurred are displayed in table 4. We inspected the Lagrange multipliers to find that none of the four types was a global minimum. For type II, the most frequently produced low-rank correlation matrix, we also investigated the orthonormal transformation effect. Of the 88 produced matrices **X** that could be identified with type II, all were differently rotated, but no reflection occurred. The maximum rotation was equal to 38° and the standard deviation of the rotation was 7° .

From the above results, we conclude that the order effect is not much of an issue for the case of interest rate correlation matrices, at least not for the numerical setting that we investigated.

5.4. Majorization equipped with the power method

Line 6 of algorithm *1* uses the largest eigenvalue of a matrix, which can be implemented in several different ways. For example, our implementation in the MATLAB

⁶ The indeterminacy of the result produced by the algorithm can easily be resolved by either considering only $\mathbf{X}\mathbf{X}^T$ or by rotation of \mathbf{X} into its principal axes. For the latter, let $\mathbf{X}^T\mathbf{X} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T$ be an eigenvalue decomposition. Then the principal axes representation is given by $\mathbf{X}\mathbf{Q}$.

Figure 5. Convergence run for the use of the power method versus lambda=max(eig(B)). The relative residual is $\|\nabla f(\mathbf{X}^{(i)})\|_{\mathrm{F}} / \|\nabla f(\mathbf{X}^{(0)})\|_{\mathrm{F}}$. Here n = 80 and d = 3.

function major implements lambda=max (eig(B)), which uses available MATLAB built-in functions. This choice of implementation unnecessarily calculates all eigenvalues, whereas only the largest is required. Instead, the algorithm can be accelerated by calculating only the largest eigenvalue, for example with the power method, see Golub and Van Loan (1996). We numerically tested the use of the power method versus lambda=max(eig(B)), as follows. In figure 5 we display the natural logarithm of the relative residual versus the computational time for the random Davies and Higham (2000) matrix R included in the major package, for both the power method and lambda=max (eig(B)). As can be seen from the figure, the power method results in a significant gain of computational efficiency. The power method is available as major power at www.few.eur.nl/few/people/pietersz.

5.5. Using an estimate for the largest eigenvalue

In algorithm 1, the largest eigenvalue of **B** is calculated by an eigenvalue decomposition or by the power method. Such methods may be relatively expensive to apply. Instead of a full calculation, we could consider finding an easy-to-calculate upper bound on the largest eigenvalue of **B**. Such an upper bound is readily determined as n-1due to the unit length restrictions on the n-1 vectors \mathbf{x}_i . Replacing λ and its calculation by n-1 in algorithm 1 will result in a reduction of computational time by not having to calculate the eigenvalue decomposition. A disadvantage is, however, that the resulting fitted majorizing function might be much steeper, causing its minimum to be much closer to the point of outset. In other words, the steps taken by the majorization algorithm will be smaller. Whether to use n-1 instead

of λ is thus a trade-off between computational time for the decomposition and the step size.

We tested replacing λ by n-1 for 100 correlation matrices of dimension 80×80 . These matrices were randomly generated with the procedure of Davies and Higham (2000). We allowed both versions of the algorithm a computational time of less than 1s. We investigated d=3, d=6, d=40 and d=70. For all 400 cases, without a single exception, the version of the algorithm with the full calculation of λ produced a matrix that had a lower value of f than the version with n-1. This result suggests that a complete calculation of the largest eigenvalue is most efficient. However, these results could be particular to our numerical setting. The (n-1) version of the algorithm remains an interesting alternative and could potentially be beneficial in certain experimental setups.

6. Conclusions

We have developed a novel algorithm for finding a low-rank correlation matrix locally nearest to a given The algorithm is based on iterative majorimatrix. zation and this paper is the first to apply majorization to the area of derivatives pricing. We have shown theoretically that the algorithm converges to a stationary point from any starting point. As an addition to the previously available methods in the literature, majorization, in our simulation setup, was more efficient than either geometric programming, the Lagrange multiplier technique or the parametrization method. Furthermore, majorization is easier to implement than any method other than modified PCA. The majorization method efficiently and straightforwardly allows for arbitrary weights.

Acknowledgements

We are grateful for the comments of Antoon Pelsser and seminar participants at ABN AMRO Bank, Belgian Financial Research Forum 2004 (Brussels, Belgium), ECMI Conference 2004 (Eindhoven, The Netherlands) and MC²QMC Conference 2004 (Juan-les-Pins, France).

Appendix A: Proof of equation (12)

Define the algorithm *I* mapping $\mathbf{x}_i^{(k+1)} = \mathbf{m}_i(\mathbf{x}_i^{(k)}, \mathbf{X}^{(k)})$. For ease of exposition we suppress the dependency on the row index *i* and current state $\mathbf{X}^{(k)}$, so $\mathbf{x}^{(k+1)} = \mathbf{m}(\mathbf{x}^{(k)})$, with

$$\mathbf{m}(\mathbf{x}) = \frac{\mathbf{z}}{\|\mathbf{z}\|}, \quad \mathbf{z} = (\lambda \mathbf{I} - \mathbf{B})\mathbf{x} + \mathbf{a},$$

where **B** depends on **X** according to (7), λ is the largest eigenvalue of **B** and $\mathbf{a} = \sum_{j:i\neq j} w_{ij}r_{ij}\mathbf{x}_j$. We have locally around $\mathbf{x}^{(\infty)}$, by first-order Taylor approximation,

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(\infty)} + \mathbf{Dm}(\mathbf{x}^{(\infty)})(\mathbf{x}^{(k)} - \mathbf{x}^{(\infty)}) + \mathcal{O}(\|\mathbf{x}^{(k)} - \mathbf{x}^{(\infty)}\|^2).$$

By straightforward calculation, the Jacobian matrix equals

$$\mathbf{Dm}(\mathbf{x}^{(\infty)}) = (\mathbf{I} - (\mathbf{x}^{(\infty)})(\mathbf{x}^{(\infty)})^{\mathrm{T}}) \frac{1}{\|\mathbf{z}^{(\infty)}\|} (\lambda \mathbf{I} - \mathbf{B})$$

The matrix $\mathbf{I} - (\mathbf{x}^{(\infty)})(\mathbf{x}^{(\infty)})^{\mathrm{T}}$ is denoted by $\mathbf{P}_{\mathbf{x}^{(\infty)}}$. Then, up to first order in $\delta^{(k)} = \|\mathbf{x}^{(k)} - \mathbf{x}^{(\infty)}\|$,

$$\begin{split} \mathbf{x}^{(k+1)} - \mathbf{x}^{(\infty)} &\approx \mathbf{P}_{\mathbf{x}^{(\infty)}} \frac{1}{\|\mathbf{z}^{(\infty)}\|} (\lambda \mathbf{I} - \mathbf{B}) (\mathbf{x}^{(k)} - \mathbf{x}^{(\infty)}) \\ &= \mathbf{P}_{\mathbf{x}^{(\infty)}} \frac{1}{\|\mathbf{z}^{(\infty)}\|} ((\lambda \mathbf{I} - \mathbf{B}) \mathbf{x}^{(k)} + \mathbf{a} \\ &- ((\lambda \mathbf{I} - \mathbf{B}) \mathbf{x}^{(\infty)} + \mathbf{a})) \\ &= \mathbf{P}_{\mathbf{x}^{(\infty)}} \frac{1}{\|\mathbf{z}^{(\infty)}\|} (\mathbf{z}^{(k)} - \mathbf{z}^{(\infty)}) \\ &= \frac{\|\mathbf{z}^{(k)}\|}{\|\mathbf{z}^{(\infty)}\|} \mathbf{P}_{\mathbf{x}^{(\infty)}} (\mathbf{x}^{(k)} - \mathbf{x}^{(\infty)}), \end{split}$$
(A1)

where in the last equality we have used $\mathbf{P}_{\mathbf{x}^{(\infty)}}\mathbf{x}^{(\infty)} = \mathbf{0}$. Note that, up to first order in δ^k , $\|\mathbf{z}^{(k)}\|/\|\mathbf{z}^{(\infty)}\| \approx 1$. The term $\|\mathbf{P}_{\mathbf{x}^{(\infty)}}(\mathbf{x}^{(k)} - \mathbf{x}^{(\infty)})\|$ can be calculated by elementary geometry, see figure A1. The projection operator $\mathbf{P}_{\mathbf{x}^{(\infty)}}$ sets any component in the direction of $\mathbf{x}^{(\infty)}$ to zero and

Figure A1. The equality $\|\mathbf{P}_{\infty}(\mathbf{x}^{(k)} - \mathbf{x}^{(\infty)})\| = \delta^{(k)} [1 - (\delta^{(k)})^2 / 4]^{1/2}$.

leaves any orthogonal component unaltered. The resulting length $\|\mathbf{P}_{\mathbf{x}^{(\infty)}}(\mathbf{x}^{(k)} - \mathbf{x}^{(\infty)})\|$ is illustrated in figure A1. If we denote this length by μ , then $\mu = \sin(\theta)$, where θ is the angle as denoted in the figure. Also, $\sin(\theta/2) = \delta^{(k)}/2$, from which we obtain $\theta = 2 \arcsin(\delta^{(k)}/2)$. It follows that

$$\mu = \sin(2 \arcsin(\delta^{(k)}/2))$$

= 2 sin(arcsin(\delta^{(k)}/2)) cos(arcsin(\delta^{(k)}/2))
= 2\left(\frac{\delta^{(k)}}{2}\right)\sqrt{1 - \left(\frac{\delta^{(k)}}{2}\right)^2}
= \delta^{(k)}\sqrt{1 - (\delta^{(k)})^2/4} = \delta^{(k)} + \mathcal{O}((\delta^{(k)})^2). (A2)

The result $\delta^{(k+1)} = \delta^{(k)} + \mathcal{O}((\delta^{(k)})^2)$ follows by combining (A1) and (A2).

References

- Borg I and Groenen P J F 1997 Modern Multidimensional Scaling (Berlin: Springer)
- Brace A, Gatarek D and Musiela M 1997 The market model of interest rate dynamics *Math. Finance* **7** 127–55
- Brigo D 2002 A note on correlation and rank reduction, downloadable from www.damianobrigo.it
- Chu M T, Funderlic R E and Plemmons R J 2003 Structured low rank approximation *Linear Algebra Applications* **366** 157–72
- Davies P I and Higham N J 2000 Numerically stable generation of correlation matrices and their factors *BIT* **40** 640–51
- De Jong F, Driessen J and Pelsser A A J 2004 On the information in the interest rate term structure and option prices *Rev. Derivatives Res.* **7** 99–127
- De Leeuw and Heiser W 1977 Convergence of correctionmatrix algorithms for multidimensional scaling *Geometric Representations of Relational Data* eds J C Lingoes, E E Roskam and I Borg (Ann Arbor, MI: Mathesis Press) pp 735–52
- Dolan E D and More J J 2002 Benchmarking optimization software with performance profiles *Math. Programming* Ser. A **91** 201–13
- Dykstra R L 1983 An algorithm for restricted least squares regression J. Am. Stat. Assoc. 87 837–42
- Flury B 1988 Common Principal Components and Related Multivariate Models (New York: Wiley)
- Glunt W, Hayden T L, Hong S and Wells J 1990 An alternating projection algorithm for computing the nearest Euclidean distance matrix *SIAM J. Matrix Anal. Applications* **11** 589–600
- Golub G H and Van Loan C F 1996 *Matrix Computations* 3rd edn (Baltimore, MD: John Hopkins University Press)
- Grubišić I and Pietersz R 2004 Efficient rank reduction of correlation matrices *Working paper* Utrecht University, Utrecht, downloadable from www.few.eur.nl/few/ people/pietersz
- Han S-P 1988 A succesive projection method *Math. Programming* **40** 1–14
- Hayden T L and Wells J 1988 Approximation by matrices positive semidefinite on a subspace *Linear Algebra Applications* **109** 115–30

- Heiser W J 1995 Convergent computation by iterative majorization: theory and applications in multidimensional data analysis *Recent Advances in Descriptive Multivariate Analysis* ed W J Krzanowski (Oxford: Oxford University Press) pp 157–89
- Higham N J 2002 Computing the nearest correlation matrix—a problem from finance *IMA J. Numer. Anal.* **22** 329–43
- Hull J C and White A 2000 Forward rate volatilities, swap rate volatilities, and implementation of the LIBOR market model *J. Fixed Income* **10** 46–62
- Jamshidian F 1997 Libor and swap market models and measures *Finance Stochastics* **1** 293–330
- Kiers H A L 2002 Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems *Comput. Stat. Data Anal.* 41 157–70
- Kiers H A L and Groenen P J F 1996 A monontonically convergent algorithm for orthogonal congruence rotation *Psychometrika* **61** 375–89
- Miltersen K R, Sandmann K and Sondermann D 1997 Closed form solutions for term structure derivatives with log-normal interest rates J. Finance **52** 409–30

- Rapisarda F, Mercurio F and Brigo D 2002 Parametrizing correlations: a geometric interpretation *Banca IMI Working Paper* downloadable from www. fabiomercurio.it
- Rebonato R 1999a Calibrating the BGM model *Risk Mag.* March 74–9
- Rebonato R 1999b Volatility and Correlation in the Pricing of Equity, FX and Interest-Rate Options (Chichester: Wiley)

Rebonato R 2002 Modern Pricing of Interest-Rate Derivatives (Princeton, NJ: Princeton University Press)

- Suffridge T J and Hayden T L 1993 Approximation by a Hermitian positive semidefinite Toeplitz matrix *SIAM* J. Matrix Anal. Applications 14 721–34
- Wu L 2003 Fast at-the-money calibration of the LIBOR market model using Lagrange multipliers J. Comput. Finance 6 39–77
- Zangwill W I 1969 Convergence conditions for nonlinear programming algorithms *Manage. Sci. (Theory Series)* **16** 1–13
- Zhang Z and Wu L 2003 Optimal low-rank approximation to a correlation matrix *Linear Algebra Applications* **364** 161–87