
QUANTITATIVE FINANCE VOLUME 4 (DECEMBER 2004) 649–662 RE S E A R CH PA P E R

TAYLOR & FRANCIS LTD tandf.co.uk

Rank reduction of correlation matrices
by majorization

Raoul Pietersz
1,2,4

and Patrick J F Groenen
3

1 Erasmus Research Institute of Management, Erasmus University
Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
2 Product Development Group (HQ7011), ABN AMRO Bank,
P.O. Box 283, 1000 EA Amsterdam, The Netherlands
3 Econometric Institute, Erasmus University Rotterdam,
P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

E-mail: pietersz@few.eur.nl and groenen@few.eur.nl

Received 18 March 2004, in final form 8 October 2004
Published 18 April 2005
Online at www.tandf.co.uk/journals/titles/14697688.asp DOI:10.1080/14697680400016182

Abstract
A novel algorithm is developed for the problem of finding a low-rank
correlation matrix nearest to a given correlation matrix. The algorithm
is based on majorization and, therefore, it is globally convergent.
The algorithm is computationally efficient, is straightforward to
implement, and can handle arbitrary weights on the entries of the
correlation matrix. A simulation study suggests that majorization
compares favourably with competing approaches in terms of the quality
of the solution within a fixed computational time. The problem of
rank reduction of correlation matrices occurs when pricing a derivative
dependent on a large number of assets, where the asset prices are
modelled as correlated log-normal processes. Such an application mainly
concerns interest rates.

1. Introduction

In this paper, we study the problem of finding a low-rank

correlation matrix nearest to a given (correlation) matrix.

First we explain how this problem occurs in an interest

rate derivatives pricing setting. We will focus on interest

rate derivatives that depend on several rates such as the

1 year LIBOR deposit rate, the 2 year swap rate, etc. An

example of such a derivative is a Bermudan swaption. A

Bermudan swaption gives its holder the right to enter into

a fixed maturity interest rate swap at certain exercise

dates. At an exercise opportunity, the holder has to

choose between exercising then or hold the option with

the chance of entering into the swap later at more

favourable interest rates. Evidently, the value depends

not only on the current available swap rate but, amongst
others, also on the forward swap rates corresponding to

future exercise dates. In contrast, an example of a

derivative that is dependent on a single interest rate is a
caplet, which can be viewed as a call option on LIBOR.

In this case, the value of the caplet depends only on a

single forward LIBOR rate.
Here, we will focus on derivatives depending on

several rates. Our discussion can, however, also be

applied to the situation of a derivative depending on

several assets. To do so, a model is set up that specifies
the behaviour of the asset prices. Each of the asset

prices is modelled as a log-normal martingale under its

respective forward measure. Additionally, the asset prices4 Author to whom any correspondence should be addressed.

1469-7688 Print/1469-7696 Online/04/060649–14 � 2004 Taylor & Francis Ltd 649

are correlated. Suppose we model n correlated log-
normal price processes,

dsi

si
¼ . . . dtþ �i d ~wwi, hd ~wwi, d ~wwji ¼ rij, ð1Þ

under a single measure. Here, si denotes the price of
the asset, �i its volatility and ~wwi denotes the associated
driving Brownian motion. Brownian motions i and j are
correlated with coefficient rij , the correlation coefficient
between the returns on assets i and j. The matrix
R ¼ ðrijÞij should be positive semidefinite and should have
a unit diagonal. In other words, R should be a true
correlation matrix. The term . . . dt denotes the drift term
that stems from the change of measure under the non-
arbitrage condition. The models that fit into the
framework of (1) and which are most relevant to our
discussion are the LIBOR and swap market models for
valuation of interest rate derivatives. These models were
developed by Brace et al (1997), Jamshidian (1997) and
Miltersen et al (1997). In this case, an asset price
corresponds to a forward LIBOR or swap rate. For
example, if we model a 30 year Bermudan swaption with
annual call and payment dates, then our model would
consist of 30 annual forward LIBOR rates or 30
co-terminal forward swap rates. In the latter case, we
consider 30 forward starting annual-paying swaps, start-
ing at each of the 30 exercise opportunities and all ending
after 30 years. Model (1) could, however, also be applied
to a derivative depending on a number of stocks, for
example.

Given the model (1), the price of any derivative
depending on the assets can be calculated by non-
arbitrage arguments. Because the number of assets is
assumed to be high and the derivative is assumed complex
in this exposition, the derivative value can be calculated
only by Monte Carlo simulation. To implement
scheme (1) by Monte Carlo we need a decomposition
R ¼ XXT, with X an n� n matrix. In other words,
if we denote the ith row vector of X by xi, then the
decomposition reads hxi, xji ¼ rij, where h�, �i denotes the
scalar product. We then implement the scheme

dsi

si
¼ . . . dtþ �ifxi1 dw1 þ � � � þ xin dwng, hxi, xji ¼ rij ,

ð2Þ

where the wi are now independent Brownian motions.
Scheme (2) indeed corresponds to scheme (1) since both
volatility and correlation are implemented correctly.
The instantaneous variance is hdsi=sii ¼ �2

i dt since
kxik ¼ rii ¼ 1 and volatility is the square root of
instantaneous variance divided by dt. Moreover, for
the instantaneous covariance we have hdsi=si, dsj=sji ¼
�i�jhxi,xjidt ¼ �i�jrij dt.

For large interest rate correlation matrices, usually
almost all variance (say 99%) can be attributed to only
three to six stochastic Brownian factors. Therefore, (2)

contains a large number of almost redundant Brownian
motions that take up expensive computational time to
simulate. Instead of taking into account all Brownian
motions, we would wish to do the simulation with a
smaller number of factors, d say, with d< n and d
typically between 2 and 6. The scheme then becomes

dsi

si
¼ . . . dtþ �ifxi1 dw1 þ � � � þ xid dwdg, hxi, xji ¼ rij:

The n� d matrix X is a decomposition of R. This
approach immediately implies that the rank of R be less
than or equal to d. For financial correlation matrices,
this rank restriction is generally not satisfied. It follows
that an approximation is required. We could proceed in
two possible ways. The first way involves approximating
the covariance matrix ð�i�jrijÞij. The second involves
approximating the correlation matrix while maintaining
an exact fit to the volatilities. In a derivatives pricing
setting, the volatilities are usually well known. These can
be calculated via a Black-type formula from the European
option prices quoted in the market, or mostly these
volatilities are directly quoted in the market. The
correlation is usually less known and can be obtained in
two ways. First, it can be estimated from historical time
series. Second, it can be implied from correlation
sensitive market-traded options such as spread options.
A spread option is an option on the difference between
two rates or asset prices. Such correlation sensitive
products are not traded as liquidly as the European plain-
vanilla options. Consequently, in both cases of historic
or market-implied correlation, we are more confident
of the volatilities. For that reason, in a derivative pricing
setting, we approximate the correlation matrix rather
than the covariance matrix.

The above considerations lead to solving the follow-
ing problem:

Find X 2 Rn�d ,

to minimize f ðXÞ :¼
1

c

X
i<j

wijðrij � hxi, xjiÞ
2,

subject to kxik2 ¼ 1, i ¼ 1, . . . , n:

ð3Þ

Here wij are non-negative weights and c :¼ 4
P

i<j wij .
The objective value f is scaled by the constant c in order
to make it independent of the problem dimension n.
Because each term rij � hxi, xji is always between 0 and 2,
it follows for the choice of c that f is always between 0
and 1. The weights wij have been added for three reasons:

. For squared differences, a large difference will be
weighted more than a small difference. The weights can
then be appropriately changed to adjust for this.

. Financial reasons may sometimes compel us to assign
higher weights to particular correlation pairs. For
example, we could be more confident about the
correlation between the 1 and 2 year swap rates than
about the correlation between the 8 and 27 year swap
rates.

650

R Pietersz and P J F Groenen QUANTITATIVE FINANCE

. The objective function with weights has been consi-
dered before in the literature. See, for example,
Rebonato (1999b, section 10). Rebonato (2002, section
9) provides an excellent discussion of the pros and cons
of using weights.

The simplest case of f is f ðXÞ :¼ c�1kR� XXTk2F, where

k � kF denotes the Frobenius norm, kYk2F :¼ trðYYTÞ for

matrices Y. This objective function (which we shall also

call ‘Frobenius norm’) fits into the framework of (3); it

corresponds to the case of all weights equal. The

objective function in (3) will be referred to as ‘general

weights’.
In the literature, there exist five algorithms for

minimizing f defined in (3). These methods will be

outlined in the next section and will be shown to have

several disadvantages, namely none of the methods is

simultaneously

(i) efficient,
(ii) straightforward to implement,
(iii) able to handle general weights, and
(iv) guaranteed to converge to a local minimum.

In this paper, we develop a novel method to minimize f

that simultaneously has the four above properties. The

method is based on iterative majorization, which has the

important property of guaranteed convergence to a

stationary point. The algorithm is straightforward to

implement. We show that the method can handle

general weights efficiently. We investigate empirically

the efficiency of majorization in comparison with other

methods in the literature. The benchmark tests that

we will consider are based on the performance given a

fixed small amount of computational time. This is exactly

the situation in a finance setting: decisions based on

derivative pricing calculations have to be made in a

limited amount of time.
The remainder of this paper is organized as follows.

First, we provide an overview of the methods available

in the literature. Second, the idea of majorization is

introduced and the majorizing functions are derived.

Third, an algorithm based on majorization is given along

with reference to associated MATLAB code. Global

convergence and the local rate of convergence are

investigated. Fourth, we present empirical results. The

paper ends with some conclusions.

2. Literature review

We describe five existing algorithms available in the

literature for minimizing f. For each algorithm, it is

indicated whether it can handle general weights. If not,

then the most general objective function it can

handle stems from the weighted Frobenius norm

k � kF,: with : a symmetric positive definite matrix,

where kXk2F,: :¼ trðX:XT:Þ. The objective function

f ðXÞ :¼ c�1kR� XXTk2F,: will also be referred to as the

‘weighted Frobenius norm’.
First, we mention the ‘modified principal component

analysis (PCA)’ method. For ease of exposition, we

restrict ourselves to the case of the Frobenius norm,

however the method can be applied to the weighted

Frobenius norm as well, though not for general weights.

Modified PCA is based on an eigenvalue decomposition

R ¼ Q,QT, with Q orthonormal and , the diagonal

matrix with eigenvalues. If the eigenvalues are ordered

descendingly then a low-rank decomposition with asso-

ciated approximated matrix close to the original matrix

is found by

fXPCAgi ¼
z

kzk2
, ð4Þ

z :¼ fQd,
1=2
d gi, i ¼ 1, . . . , n: ð5Þ

Here fYgi denotes the ith row of a matrix Y, Qd the first

d columns of Q, and ,d the principal sub-matrix of , of

degree d. Ordinary PCA stops with (5) and it is the

scaling in (4) that is the ‘modified’ part, ensuring that

the resulting correlation matrices have unit diagonal.

Modified PCA is popular among financial practitioners

and implemented in numerous financial institutions. The

modification of PCA in this way is believed to be due to

Flury (1988). For a description in a finance-related article,

see, for example, Hull and White (2000). Modified PCA

is easy to implement, because almost all that is required is

an eigenvalue decomposition. The calculation is almost

instant, and the approximation is reasonably accurate. A

strong drawback of modified PCA is its non-optimality:

generally, one may find decompositions X (even locally)

for which the associated correlation matrix XXT is closer

to the original matrix R than the PCA-approximated

correlation matrix XPCAX
T
PCA. The modified PCA appro-

ximation becomes worse when the magnitude of the

omitted eigenvalues increases.
The second algorithm that we discuss is the geometric

programming approach of Grubišić and Pietersz (2004).

Here, the constraint set is equipped with a differentiable

structure. Subsequently, geometric programming is

applied, which can be seen as Newton–Rhapson or

conjugate gradient over curved space. By formulating

these algorithms entirely in terms of differential geometric

means, a simple expression is obtained for the gradient.

The latter allows for an efficient implementation. Until

now the geometric programming approach has been

shown empirically to be the most efficient algorithm for

finding the nearest low-rank correlation matrix, see

Grubišić and Pietersz (2004, section 6). This result was

obtained in a particular numerical setting with a large

number of randomly generated correlation matrices.

Another advantage of geometric programming is that it

can handle general weights. However, a drawback of the

geometric programming approach is that it takes many

651

QUANTITATIVE FINANCE Rank reduction of correlation matrices by majorization

lines of non-straightforward code to implement, which
may hinder its use for non-experts.

As the third algorithm, we mention the Lagrange
multiplier technique developed by Zhang and Wu (2003)
and Wu (2003). This method lacks guaranteed conver-
gence: Zhang and Wu (2003, proposition 4:1) prove the
following result. The Lagrange multiplier algorithm
produces a sequence of multipliers for which accumula-
tion points exist. If, for the original matrix plus the
Lagrange multipliers of an accumulation point, the dth
and ðd þ 1Þth eigenvalues have different absolute values,
then the resulting rank-d approximation is a global
minimizer of problem (3). However, the condition that
the dth and ðd þ 1Þth eigenvalues are different has not
been guaranteed. This equal-eigenvalues phenomenon
occurs in numerical experiments. Therefore, convergence
of the Lagrange multiplier method to a global minimum
or even to a stationary point is not guaranteed. It is
beyond the scope of this paper to indicate how often this
‘non-convergence’ occurs. If the algorithm has not yet
converged, then the produced low-rank correlation
matrix will not satisfy the diagonal constraint. The
appropriate adaptation is to re-scale the associated
configuration similarly to the modified PCA approach (4).
For certain numerical settings, the resulting algorithm
has been shown to perform no better and even worse
than the geometric programming approach of Grubišić
and Pietersz (2004). Another drawback of the Lagrange
multiplier algorithm is that only the weighted Frobenius
norm can be handled and not general weights.

Fourth, we mention the ‘parametrization method’
of Rebonato (1999a), Rebonato (1999b, section 9), Brigo
(2002), Rapisarda et al (2002) and Rebonato (2002,
section 9). In this method, each row vector of the n� d
configuration matrix X is parameterized by spherical
coordinates. Subsequently, nonlinear programming
algorithms such as Newton–Rhapson or conjugate
gradient are applied on the ‘parameter’ or ‘angle’ space.
In essence, this approach is the same as the geometric
programming approach, bar the fundamental difference
in the choice of coordinates. The parametrization by
spherical coordinates implies that the objective function is
given in terms of trigonometric sin and cos functions. In
turn, these yield a computational burden when calculating
the derivative, which hinders an efficient implementation.
Grubišić and Pietersz (2004, section 6) have shown,
empirically for a particular numerical setting with many
randomly generated correlation matrices, that the para-
metrization method is numerically less efficient than
either the geometric programming approach or the
Lagrange multiplier approach. The parametrization
approach can handle general weights.

Fifth, we mention the alternating projections method,
which can only be used when there are no rank
restrictions (d :¼ n) and only with the weighted
Frobenius norm. To understand the methodology, note
that minimization problem (3) with equal weights and

d :¼ n can be written as minfkR� Ck2F; C � 0, diag

ðCÞ ¼ Ig. The two constraint sets fC � 0g and fdiagðCÞ ¼ Ig

are both convex. The convexity was cleverly exploited by

Higham (2002), who showed that the alternating projec-

tions algorithm of Dykstra (1983) and Han (1988) could

be applied. The same technique has been applied in a

different context by Chu et al (2003), Glunt et al (1990),

Hayden and Wells (1988) and Suffridge and Hayden

(1993). The alternating projections algorithm could, in

principle, be extended to the case with rank restrictions,

since we can efficiently calculate the projection onto the

set of rank-d matrices. Convergence of the algorithm is,

however, no longer guaranteed by the general results of

Dykstra (1983) and Han (1988) because the constraint set

frankðCÞ � dg is no longer convex for d< n. Some

preliminary experimentation indeed showed that exten-

sion to the non-convex case did not work generally.

Higham (2002, section 5, ‘Concluding remarks’) mentions

that he has been investigating alternative algorithms so as

to include rank constraints.
Since the case d< n is the primary interest of this

paper, the alternating projections method will not be

considered in the remainder. Throughout this article

we choose the starting point of any method consi-

dered (beyond modified PCA) to be the modified PCA

solution.

3. Majorization

In this section, we briefly describe the idea of majoriza-

tion and apply majorization to the objective function

f of problem (3). The idea of majorization has been

described, amongst others, by De Leeuw and Heiser

(1977), Kiers and Groenen (1996) and Kiers (2002).

We follow here the lines of Borg and Groenen (1997,

section 8:4). The key to majorization is to find a simpler

function that has the same function value at a supporting

point y and anywhere else is larger than or equal to the

objective function to be minimized. Such a function is

called a majorization function. By minimizing the

majorization function—which is an easier task since this

function is ‘simpler’—we obtain the next point of the

algorithm. This procedure guarantees that the function

value never increases along points generated by the

algorithm. Moreover, if the objective and majorization

functions are once continuously differentiable (which

turns out to hold in our case), then the properties above

imply that the gradients should match at the supporting

point y. As a consequence, from any point where the

gradient of the objective function is non-negligible,

iterative majorization will be able to find the next point

with a strictly smaller objective function value. This

generic fact for majorization algorithms has been pointed

out by Heiser (1995).
We formalize the procedure somewhat more. Let f(�)

denote the function to be minimized. Let for each y in the

652

R Pietersz and P J F Groenen QUANTITATIVE FINANCE

domain of f be given a majorization function gð�, yÞ such
that

(i) f ðxÞ ¼ gðx, xÞ,
(ii) f ðxÞ � gðx, yÞ for all x, and
(iii) the function gð�, yÞ is ‘simple’, that is, it is

straightforward to calculate the minimum of gð�, yÞ.

A majorization algorithm is then given by

(i) Start at xð0Þ. Set k :¼ 0.
(ii) Set xðkþ1Þ equal to the minimum argument of the

function gð�,xðkÞÞ.
(iii) If f ðxðkÞÞ�f ðxðkþ1ÞÞ<" then stop with x :¼xðkþ1Þ.
(iv) Set k :¼ kþ 1 and repeat from (ii).

Figure 1 illustrates the majorization algorithm.
Below we derive the majorizing function for f(�)

in (3). The first step is to majorize f(X) as a function
of the ith row only and then to repeat this for each row.
To formalize the notion of ‘f(X) as a function of the ith
row only’ we introduce the notation fiðx;XÞ to denote the

function

fið�,XÞ : x� f ðX̂XiðxÞÞ

for (column)vectors x 2 R
d with X̂XiðxÞ denoting the

matrix X with the ith row replaced by xT. Note that we
interpret X; as ½x1 � � � xn�

T. We find

f ðXÞ ¼
1

c

X
j1<j2

wj1j2ðrj1j2 �hxj1 ,xj2iÞ
2

¼
1

c

X
j1<j2

wj1j2ðr
2
j1j2

þðxTj1xj2Þ
2
� 2rj1j2x

T
j1
xj2Þ ¼ ðconst in xiÞ

þ
1

c
xTi

X
j:j 6¼i

wijxjx
T
j

h i
xi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIÞ

�2xTi

X
j:j 6¼i

wijrijxj

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIÞ

8>><
>>:

9>>=
>>;:
ð6Þ

Part (I) is quadratic in xi, whereas part (II) is linear in xi;
the remaining term is constant in xi. We only have to
majorize part (I), as follows. Define

BiðXÞ :¼
X
j:j 6¼i

wijxjx
T
j : ð7Þ

For notational convenience, we shall denote Bi(X) by B,
the running xi by x, and the current xi, that is, the current
ith row vector of X, is denoted by y. Let � denote the
largest eigenvalue of B. Then, the matrix B� �I is
negative semidefinite, so that the following inequality
holds:

ðx� yÞTðB� �IÞðx� yÞ � 0, 8x,

which gives, after manipulation,

xTBx � 2�� 2xTð�y� ByÞ � yTBy, 8x, ð8Þ

using the fact that xTx ¼ yTy ¼ 1.
Combining (6) and (8) we obtain the majorizing

function of fiðx;XÞ, that is

fiðx;XÞ � �
2

c
xT �y� Byþ

X
j:i 6¼j

wijrijxj

 !
þ ðconst in xÞ

¼ giðx;XÞ, 8x

:

The advantage of gið�;XÞ over fið�,XÞ is that it is linear
in x and that the minimization problem

minfgiðx;XÞ; kxk2 ¼ 1g ð9Þ

is readily solved by

x� :¼ z=kzk2, z :¼ �y� Byþ
X
j:j 6¼i

wijrijxj:

If z ¼ 0 then this implies that the gradient is zero, from
which it would follow that the current point y is already
a stationary point.

4. The algorithm and convergence

analysis

Majorization algorithms are known to converge to a
point with negligible gradient. This property holds also
for the current situation, as will be shown below. As the
convergence criterion is defined in terms of the gradient
Jf , an expression for Jf is needed. We restrict ourselves
to the case of all wij equal. As shown by Grubišić and
Pietersz (2004), the gradient is then given by

Jf ¼ 4c�1)X,) :¼ XXT � R: ð10Þ

An expression for the gradient for the objective function
with general weights can be found by straightforward
differentiation. The majorization algorithm has been
displayed in algorithm 1.

The row-wise approach of algorithm 1 makes it
dependent on the order of looping through the rows.

x0x1x2

f(.)

g(.,x0)
g(.,x1)

f(x0)=g(x0,x0)

g(x1,x0)

f(x1)=g(x1,x1)

g(x2,x1)

f(x2)

Figure 1. The idea of majorization. (Figure adapted from Borg
and Groenen (1997, figure 8.4).) The algorithm sets out at x0.
The majorization function gð�, x0Þ is fitted by matching the value
and first derivative of f(�) at x0. Subsequently, the function
gð�, x0Þ is minimized to find the next point x1. This procedure is
repeated to find the point x2, etc.

653

QUANTITATIVE FINANCE Rank reduction of correlation matrices by majorization

This order effect will be addressed in section 5:3. In
sections 5:4 and 5:5 we study different ways of
implementing the calculation of the largest eigenvalue of
B in line 6 of algorithm 1. In particular, we study the
use of the power method.

In the remainder of this section the convergence
of algorithm 1 is studied. First, we establish global
convergence of the algorithm. Second, we investigate
the local rate of convergence.

4.1. Global convergence

Zangwill (1969) developed generic sufficient conditions
that guarantee convergence of an iterative algorithm. The
result is repeated here in a form adapted to the case of
majorization. Let M be a compact set. Assume the
specification of a subset S � M called the solution set. A
point Y 2 S is deemed a solution. An (autonomous)
iterative algorithm is a map A : M ! M [fstopg such
that A�1ðfstopgÞ ¼ S. The proof of the following theorem
is adapted from the proof of theorem 1 of Zangwill
(1969).

Theorem 1 (Global convergence). Consider finding a local
minimum of the objective function f(X) by use of
algorithm 1. Suppose we are given a fixed tolerance
level " on the gradient of f. A point X is called a solution if
kJf ðXÞk < ": Then from any starting point Xð0Þ, the algori-
thm either stops at a solution or produces an infinite
sequence of points, none of which are solutions, for which
the limit of any convergent subsequence is a solution point.

Proof. Without loss of generality we may assume that
the procedure generates an infinite sequence of points
fXðkÞg, none of which are solutions. It remains to be
proven that the limit of any convergent subsequence must
be a solution.

First, note that the algorithm A(�) is continuous in X.
Second, note that if Xk is not a solution then

f ðXðkþ1ÞÞ ¼ f ðAðXðkÞÞÞ < f ðXðkÞÞ:

Namely, if X(k) is not a solution then its gradient is non-
negligible. Since the objective and all majorization
functions are differentiable, we necessarily have that the
gradients agree at X(k). Therefore, when minimizing the
majorization functions gið�,XÞ there will be at least one i
for which we find a strictly smaller objective value. Thus
Xðkþ1Þ :¼ AðXðkÞÞ has a strictly smaller objective function
value than X(k). Third, note that the sequence ff ðXðkÞÞg1k¼0

has a limit since it is monotonically decreasing and
bounded from below by 0.

Let fXðkjÞg1j¼1 be any subsequence that converges to
X�, say. It must be shown that X� is a solution. Assume
the contrary. By continuity of the iterative procedure,
AðXðkjÞÞ ! AðX�Þ. By the continuity of f(�), we then have

f ðAðXðkj ÞÞÞ
?y f ðAðX�ÞÞ < f ðX�Þ,

which is in contradiction with f ðAðXðkjÞÞÞ ! f ðX�Þ. œ

The algorithm thus converges to a point with vanishing
first derivative. We expect such a point to be a local
minimum, but, in principle, it may also be a stationary
point. In practice, however, we almost always obtain a
local minimum, except for very rare degenerate cases.
Moreover, global convergence to a point with zero first
derivative is the best one may expect from generic
optimization algorithms. For example, the globally
convergent version of the Newton–Rhapson algorithm
may also converge to a stationary point: applied to the
function f ðx, yÞ ¼ x2 � y2, it will converge to the sta-
tionary point (0,0) starting from any point on the line
fy ¼ 0g.

4.2. Local rate of convergence

The local rate of convergence determines the speed at
which an algorithm converges to a solution point in the
neighbourhood thereof. Let XðkÞg be a sequence of points
produced by an algorithm converging to a solution point
Xð1Þ. Suppose, for k large enough,

kXðkþ1Þ � Xð1Þk � �kXðkÞ � Xð1Þk�: ð11Þ

Algorithm 1 The majorization algorithm for finding a low-rank correlation matrix locally nearest to a given matrix. Here, R
denotes the input matrix, W denotes the weight matrix, n denotes its dimension, d denotes the desired rank, "kJf k is the
convergence criterion for the norm of the gradient and "f is the convergence criterion on the improvement in the function value.

Input: R, W, n, d, "kJf k, "f.
1: Find starting point X by means of the modified PCA method (4) and (5).
2: for k¼ 0, 1, 2, . . . do
3: stop if the norm of the gradient of f at XðkÞ :¼ X is less than "kJf k and the improvement in the function value

fk�1=fk � 1 is less than "f.
4: for i ¼ 1, 2, :::, n do

5: Set B :¼
P

j 6¼i wijxjx
T
j .

6: Calculate � to be the largest eigenvalue of the d� d matrix B.
7: Set z :¼ �xi � Bxi þ

P
j 6¼i wijrijxj .

8: If z 6¼ 0, then set the ith row xi of X equal to z=kzk2.
9: end for

10: end for

Output: the n� n matrix XXT is the rank-d approximation of R satisfying the convergence constraints.

654

R Pietersz and P J F Groenen QUANTITATIVE FINANCE

If �¼ 1 and �<1 or if �¼ 2 the local convergence is called
linear or quadratic, respectively. If the convergence
estimate is worse than linear, the convergence is deemed
sub-linear. For linear convergence, � is called the linear
rate of convergence.

When considering several algorithms and indefinite
iteration, the algorithm with best rate of convergence will
eventually provide the best result. Among the algorithms
available in the literature, both the geometric program-
ming and parametrization approach can have a quadratic
rate of convergence given that a Newton–Rhapson-type
algorithm is applied. As the proposition below will show,
algorithm 1 has a sub-linear local rate of convergence,
that is, worse than a linear rate of convergence. Thus the
majorization algorithm makes no contribution to the
existing literature for the case of indefinite iteration.
However, we did not introduce the majorization algo-
rithm for the purpose of indefinite iteration, but rather
for calculating a reasonable answer in limited time, as is
the case in practical applications of financial institutions.
Given a fixed amount of time, the performance of an
algorithm is a trade-off between rate of convergence and
computational cost per iterate. Such performance can
almost invariably only be measured by empirical inves-
tigation, and the results of the next section on numerical
experiments indeed show that majorization is the best-
performing algorithm in a number of financial settings.
The strength of majorization lies in the low costs of
calculating the next iterate.

The next proposition establishes the local sub-linear
rate of convergence.

Proposition 1 (local rate of convergence). Algorithm 1 has,
locally, a sub-linear rate of convergence. More specifically,
let fXðkÞg denote the sequence of points generated by
algorithm 1 converging to the point Xð1Þ. Define �ðk, iÞ ¼
kx

ðkÞ
i � x

ð1Þ

i k. Then

�ðkþ1, iÞ ¼ �ðk, iÞ þ Oðð�ðk, iÞÞ2Þ: ð12Þ

Proof. The proof of equation (12) may be found in
appendix A. Equation (12) can be written as �ðkþ1, iÞ ¼

�ð�ðk, iÞÞ�ðk, iÞ with �ð�ðk, iÞÞ ! 1 as k!1. It follows that
the convergence-type defining equation (11) holds, for
algorithm 1, with �¼ 1, but for �¼ 1 and not for any
�<1. We may conclude that the local convergence is
worse than linear, thus sub-linear. œ

5. Numerical results

In this section, we study and assess the performance of the
majorization algorithm in practice. First, we numerically
compare majorization with other methods in the
literature. Second, we present an example with non-
constant weights. Third, we explain and investigate the
order effect. Fourth and fifth, we consider and study
alternative versions of the majorization algorithm.

Algorithm 1 has been implemented in a MATLAB
package called major. It can be downloaded from www:
few:eur:nl/few/people/pietersz. The package
consists of the following files: clamp:m, dF:m, F:m,
grad:m, guess:m, major:m, P_tangent:m and

svdplus:m. The package can be run by calling
[Xn,Fn]¼major(R,d,ftol,gradtol): Here R
denotes the input correlation matrix, d the desired rank,
Xn the final configuration matrix, Fn denotes the final

objective function value, ftol the convergence tolerance

on the improvement of f, and gradtol the convergence
tolerance on the norm of the gradient. The aforemen-

tioned web-page also contains a package majorw that
implements non-constant weights for the objective

function f.

5.1. Numerical comparison with other methods

The numerical performance of the majorization algorithm
was compared with the performance of the Lagrange

multiplier method, geometric programming5 and the
parametrization method. Additionally, we considered

the function fmincon available in the MATLAB

optimization toolbox. MATLAB refers to this function
as a ‘medium-scale constrained nonlinear program’.

We have chosen to benchmark the algorithms by

their practical importance, that is the performance under
a fixed small amount of computational time. In financial

applications, rank reduction algorithms are usually run

for a very short time, typically 0:05–2 s, depending on the
size of the correlation matrix. We investigate which

method produces, in this limited amount of time, the best
fit to the original matrix.

The five algorithms were tested on random ‘interest

rate’ correlation matrices that are generated as follows.
A parametric form for correlation matrices is posed by

De Jong et al (2004) (equation (8)). We repeat here the

parametric form for completeness, that is

rij ¼ exp ��1jti � tjj �
�2jti � tjj

maxðti, tjÞ
�3
� �4j

ffiffiffi
ti

p
�

ffiffiffi
tj

p
j

� �
,

ð13Þ

with �1, �2, �4 > 0 and with ti denoting the expiry time

of rate i (our particular choice is ti¼ i, i ¼ 1, 2, . . .). This
model was then subsequently estimated with USD

historical interest rate data. The estimated � parameters
are listed in table 3 of De Jong et al (2004) , along with

their standard errors. A part of this table is displayed

in table 1. The random financial matrix that we used is
obtained by randomizing the � parameters in (13). We

assumed the � parameters distributed normally with

5 For geometric programming we used the MATLAB package
LRCM MIN downloadable from www.few.eur.nl/few/people/
pietersz. The Riemannian Newton-algorithm was applied.

655

QUANTITATIVE FINANCE Rank reduction of correlation matrices by majorization

mean and standard errors given by table 1, with �1, �2, �4
capped at zero.

One hundred matrices were randomly generated,

with n, d, and the computational time t varied as ðn ¼ 10,

d ¼ 2, t ¼ 0:05 s), ðn ¼ 20, d ¼ 4, t ¼ 0:1 s) and ðn ¼ 80,

d ¼ 20, t ¼ 2 s). Subsequently, the five algorithms were

applied, each with t s of computational time and the

computational time constraint was the only stopping

criterion. The results have been presented in the form of

performance profiles, as described by Dolan and Moré

(2002). The reader is referred there for the merits of using

performance profiles. These profiles are an elegant way

of presenting performance data across several algorithms,

allowing for insight into the results. We briefly describe

the workings here. We have 100 test correlation

matrices p ¼ 1, . . . , 100 and five algorithms s ¼ 1, . . . , 5.

The outcome of algorithm s on problem p is denoted by

Xðp, sÞ. The performance measure of algorithm s is defined

to be f ðXðp, sÞÞ. The performance ratio �ðp, sÞ is

�ðp, sÞ ¼
f ðXðp, sÞÞ

minsff ðX
ðp, sÞÞg

:

The cumulative distribution function �s of the (‘random’)

performance ratio p� �ðp, sÞ is then called the performance

profile,

�ðsÞð�Þ ¼
1

100
#f�ðp, sÞ � �; p ¼ 1, . . . , 100g:

The profiles are displayed in figures 2, 3, and 4. From the

performance profiles we may deduce that majorization is

the best overall performing algorithm in the numerical

cases studied.
The tests were also run with a strict convergence

criterion on the norm of the gradient. Because the

Lagrange multiplier algorithm has not been guaranteed to

converge to a local minimum, we deem an algorithm

not to have converged after 30 s of CPU time. The

majorization algorithm still performs very well, but

geometric programming and the Lagrange multiplier

method perform slightly better when running up to

convergence. This can be expected from the sub-linear

rate of convergence of majorization versus the quadratic

rate of convergence of the geometric programming

approach. The results have not been displayed since

these are not relevant in a finance setting. In financial

practice, no additional computational time will be

invested to obtain convergence up to machine precision.

Having found that majorization is the most efficient

algorithm in a finance setting for the numerical cases

considered, with the tests of running to convergence we

warn the reader when using algorithm 1 in applications

outside of finance where convergence to machine preci-

sion is required. For such non-finance applications, we

would suggest a mixed approach: use majorization in an

initial stage and finish with geometric programming. It is

the low cost per iterate that makes majorization so

attractive in a finance setting.
To assess the quality of the solutions found in

figures 2–4 we checked whether the matrices produced

by the algorithms were converging to a global minimum.

Here, we have the special case (only for equal weights)

that we can check for a global minimum, although in

other minimization problems it may be difficult to assess

0

10

20

30

40

50

60

70

80

90

100

1 1.02 1.04 1.06 1.08 1.1

Performance ratio

P
er

ce
n

ta
g

e
o

f
at

ta
in

ed
p

er
fo

rm
an

ce
ra

ti
o

Lagrange

Newton

major

param

fmincon

fmincon

Lagrange
param

major

Newton(
)

()

Figure 2. Performance profile for n¼ 10, d¼ 2, t ¼ 0:05 s.

Table 1. Part of table 3 of De Jong et al (2004).

�1 �2 �3 �4

Estimate 0.000 0.480 1.511 0.186
Standard error 0.099 0.289 0.127

656

R Pietersz and P J F Groenen QUANTITATIVE FINANCE

whether a minimum is global or not. For clarity, we point
out that the majorization algorithm does not have
guaranteed convergence to the global minimum, nor do
any of the other algorithms described in section 2. We
only have guaranteed convergence to a point with
vanishing first derivative, and in such a point we can
verify whether that point is a global minimum. If a
produced solution satisfies a strict convergence criterion

on the norm of the gradient, then it is checked whether
such a stationary point is a global minimum by inspecting
the Lagrange multipliers, see Zhang and Wu (2003),
Wu (2003) and Grubišić and Pietersz (2004, lemma 12).
The reader is referred there for details, but we briefly
describe the basic result here. Suppose X is a stationary
point, that is with negligible gradient. Define the
Lagrange multipliers ! by the diagonal matrix

0

10

20

30

40

50

60

70

80

90

100

1 1.2 1.4 1.6 1.8 2.22

Performance ratio

P
er

ce
n

ta
g

e
o

f
at

ta
in

ed
p

er
fo

rm
an

ce
ra

ti
o

Lagrange

Newton

major

param

fmincon

fmincon

Lagrange

param

major

Newton(
)

()

Figure 3. Performance profile for n¼ 20, d¼ 4, t ¼ 0:1 s.

0

10

20

30

40

50

60

70

80

90

100

1 1.2 1.4 1.6 1.8 2.22

Performance ratio

P
er

ce
n

ta
g

e
o

f
at

ta
in

ed
p

er
fo

rm
an

ce
ra

ti
o

Lagrange

Newton

major

param

fmincon

fmincon

Lagrange

param

major

Newton

(
)

()

Figure 4. Performance profile for n¼ 80, d¼ 20, t¼ 2 s.

657

QUANTITATIVE FINANCE Rank reduction of correlation matrices by majorization

! ¼ diagð)XXTÞ, with) as in (10). Then Grubišić and
Pietersz (2004, lemma 12) how that XXT and Rþ! have a
joint eigenvalue decomposition

Rþ ! ¼ Q,QT, XXT ¼ Q,�QT,

where ,� can be obtained by selecting, at most, d non-
negative entries from ,. Here, if an entry is selected it
retains the corresponding position in the matrix. If now
,� contains the largest d non-negative entries from ,
then X is not only a stationary point, but also a global
minimizer of problem (3). We reiterate that this result
holds only for the case of equal weights.

The percentage of matrices that were deemed global
minima was between 95% and 100% for both geometric
programming and majorization, respectively, for the cases
n¼ 20, d¼ 4 and n¼ 10, d¼ 2. The Lagrange multiplier
and parametrization methods did not produce any
stationary points within 20 s of computational time.
The percentage of global minima is high since the
eigenvalues of financial correlation matrices are rapidly
decreasing. In effect, there are large differences between
the first four or five consecutive eigenvalues. For the case
n¼ 80, d¼ 20 it was more difficult to check the global
minimum criterion since subsequent eigenvalues are
smaller and closer to each other. In contrast, if we
apply the methods for all cases to the random correlation
matrices of Davies and Higham (2000), for which the
eigenvalues are all very similar, we find that a much lower
percentage of produced stationary points were global
minima.

5.2. Non-constant weights

We consider the example with non-constant weights
described by Rebonato (2002, section 9:3), in which a
functional form for the correlation matrix is specified,
that is

rij ¼ LongCorrþ ð1� LongCorrÞ

� expf�	jti � tjjg, i, j ¼ 1, . . . , n:

The parameters are set to n¼ 10, LongCorr ¼ 0:6, 	¼ 0:1,
ti¼ i. Subsequently, Rebonato presents the rank 2, 3,
and 4 matrices found by the parametrization method for
the case of equal weights. The majorization algorithm
was also applied and its convergence criterion was set
to machine precision for the norm of the gradient.

Comparative results for the parametrization and major-
ization algorithms are displayed in table 2. Columns I
and II denote kR

Approx
Reb � R

Approx
major kF and kR

Approx
major, rounded�

R
Approx
major kF, respectively. Here ‘Approx’ stands for the rank-

reduced matrix produced by the algorithm and ‘rounded’
stands for rounding the matrix after six digits, as is the
precision displayed in Rebonato (2002). Columns I and II
show that the matrices displayed in Rebonato (2002) are
not yet fully converged up to machine precision, since the
round-off error from displaying only six digits is much
smaller than the error in obtaining full convergence to the
stationary point.

Rebonato proceeds by minimizing f for rank 3 with
two different weights matrices. These weights matrices
are chosen by financial arguments specific to a ratchet cap
and a trigger swap, which are interest rate derivatives.
The weights matrix WðRÞ for the ratchet cap is a
tridiagonal matrix,

w
ðRÞ

ij ¼ 1 if j ¼ i � 1, i, i þ 1, w
ðRÞ

ij ¼ 0, otherwise,

and the weights matrix WðTÞ for the trigger swap has ones
on the first two rows and columns

w
ðTÞ
ij ¼ 1 if i ¼ 1, 2 or j ¼ 1, 2, w

ðTÞ
ij ¼ 0, otherwise:

Rebonato subsequently presents the solution matrices
found by the parametrization method. These solutions
exhibit a highly accurate yet non-perfect fit to the
relevant portions of the correlation matrices. In contrast,
majorization finds exact fits. The results are displayed in
table 3.

5.3. The order effect

The majorization algorithm is based on sequentially
looping over the rows of the matrix X. In algorithm 1,
the row index runs from 1 to n. There is, however, no
distinct reason to start with row 1, then 2, etc. It would
be equally reasonable to consider any permutation p of
the numbers f1, . . . , ng and then let the row index run as
pð1Þ, pð2Þ, . . . , pðnÞ. A priori, there is nothing to guarantee
or prevent that the resulting solution point produced with
permutation p would differ from or be equal to the
solution point produced by the default loop 1, . . . , n. This
dependency of the order is termed ‘the order effect’.
The order effect is a bad feature of algorithm 1 in general.
We show empirically that the solutions produced by the

Table 2. Comparative results of the parametrization and majorization algorithms for the example described in Rebonato
(2002, section 9.3.1).

d krf kF
major:

f major. f Rebonato I II CPU
major. (s)

2 2� 10�17 5.131� 10�04 5.137� 10�04 41� 10�04 0.02� 10�04 0.4
3 2� 10�17 1.26307� 10�04 1.26311� 10�04 15� 10�04 0.01� 10�04 1.0
4 2� 10�17 4.85� 10�05 4.86� 10�05 70� 10�04 0.01� 10�04 2.1

658

R Pietersz and P J F Groenen QUANTITATIVE FINANCE

algorithm can differ when using a different permutation.

However, we show that this is unlikely to happen for
financial correlation matrices. The order effect can have
two consequences. First, the produced solution correla-

tion matrix can differ—this generally implies a different
objective function value as well. Second, even when the
produced solution correlation matrix is equal, the config-
uration X can differ—in this case we have equal objective

function values. To see this, consider an n� d config-
uration matrix X and assume given any orthonormal
d � d matrixQ, that is, QQT ¼ I. Then the configuration
matrices X and XQ are associated with the same

correlation matrices6: XQQTX ¼ XXT.
We investigated the order effect for algorithm 1

numerically, as follows. We generated either a random
matrix by (13), see section 5:1, or a random correlation
matrix in MATLAB by

randð0state0,0Þ;randnð0state0,0Þ;n ¼ 30;

R ¼ galleryð0randcorr0,nÞ;

The random correlation matrix generator gallery
(’randcorr’,n) has been described by Davies and
Higham (2000). Subsequently, we generated 100 random

permutations with p¼randperm(n);. For each of the
permutations, algorithm 1 was applied with d¼ 2
and a high accuracy was demanded: "krf k ¼ "f ¼ 10�16.

The results for the two different correlation matrices are
as follows.

Random interest rate correlation matrix as in (13).
Only one type of produced solution correlation matrix
could be distinguished, which turned out to be a global

minimum by inspection of the Lagrange multipliers. We
also investigated the orthonormal transformation effect.
For R

2, an orthonormal transformation can be char-

acterized by the rotation of the two basis vectors and then

by �1 or þ1 denoting whether the second basis vector is

reflected in the origin or not. All produced matrices X

were differently rotated, but no reflection occurred. The

maximum rotation was equal to 0:8	 and the standard

deviation of the rotation was 0:2	.
Davies and Higham (2000) random correlation

matrix. Essentially four types of produced solution

correlation matrices could be distinguished, which we

shall name I, II, III, and IV. The associated objective

function values and the frequency at which the types

occurred are displayed in table 4. We inspected the

Lagrange multipliers to find that none of the four types

was a global minimum. For type II, the most frequently

produced low-rank correlation matrix, we also investi-

gated the orthonormal transformation effect. Of the 88

produced matrices X that could be identified with type II,

all were differently rotated, but no reflection occurred.

The maximum rotation was equal to 38	 and the standard

deviation of the rotation was 7	.
From the above results, we conclude that the order

effect is not much of an issue for the case of interest rate

correlation matrices, at least not for the numerical setting

that we investigated.

5.4. Majorization equipped with the power method

Line 6 of algorithm 1 uses the largest eigenvalue of a

matrix, which can be implemented in several different

ways. For example, our implementation in the MATLAB

Table 3. Results for the ratchet cap and trigger swap. Here ‘Tar.’ denotes the target value, ‘Maj.’ and ‘Reb.’ denote the resulting
value obtained by the majorization algorithm and Rebonato (2002, section 9.3), respectively.

Ratchet cap

First principal sub-diagonal; CPU time major 2.8 s; obtained f<2� 10�30

Tar. 0.961935 0.961935 0.961935 0.961935 0.961935 0.961935 0.961935 0.961935 0.961935
Maj. 0.961935 0.961935 0.961935 0.961935 0.961935 0.961935 0.961935 0.961935 0.961935
Reb. 0.961928 0.961880 0.961977 0.962015 0.962044 0.962098 0.961961 0.961867 0.962074
Trigger swap

First two rows (or equivalently first two columns); CPU time major 2.4 s; obtained f<2� 10�30

Row 1 (without the unit entry (1,1))
Tar. 0.961935 0.927492 0.896327 0.868128 0.842612 0.819525 0.798634 0.779732 0.762628
Maj. 0.961935 0.927492 0.896327 0.868128 0.842612 0.819525 0.798634 0.779732 0.762628
Reb. 0.961944 0.927513 0.896355 0.868097 0.842637 0.819532 0.798549 0.779730 0.762638
Row 2 (without the unit entry (2,2))
Tar. 0.961935 0.961935 0.927492 0.896327 0.868128 0.842612 0.819525 0.798634 0.779732
Maj. 0.961935 0.961935 0.927492 0.896327 0.868128 0.842612 0.819525 0.798634 0.779732
Reb. 0.961944 0.962004 0.927565 0.896285 0.868147 0.842650 0.819534 0.798669 0.779705

Table 4. The order effect. Here n¼ 30, d¼ 2 and 100 random
permutations were applied. Four types of produced correlation

matrices could be distinguished. The table displays the
associated f and frequency.

Type I I III IV

f 0.110423 0.110465 0.110630 0.110730
Frequency 2% 88% 7% 3%

6 The indeterminacy of the result produced by the algorithm can easily
be resolved by either considering only XXT or by rotation of X into its
principal axes. For the latter, let XTX ¼ Q,QT be an eigenvalue
decomposition. Then the principal axes representation is given by XQ.

659

QUANTITATIVE FINANCE Rank reduction of correlation matrices by majorization

function major implements lambda¼max (eig(B)),
which uses available MATLAB built-in functions. This

choice of implementation unnecessarily calculates all

eigenvalues, whereas only the largest is required.

Instead, the algorithm can be accelerated by calculating

only the largest eigenvalue, for example with the power

method, see Golub and Van Loan (1996). We numeri-

cally tested the use of the power method versus

lambda¼max(eig(B)), as follows. In figure 5 we

display the natural logarithm of the relative residual

versus the computational time for the random Davies and

Higham (2000) matrix R included in the major pack-
age, for both the power method and lambda¼max
(eig(B)). As can be seen from the figure, the power

method results in a significant gain of computational

efficiency. The power method is available as major
power at www:few:eur:nl/few/people/pietersz.

5.5. Using an estimate for the largest eigenvalue

In algorithm 1, the largest eigenvalue of B is calculated by

an eigenvalue decomposition or by the power method.

Such methods may be relatively expensive to apply.

Instead of a full calculation, we could consider finding an

easy-to-calculate upper bound on the largest eigenvalue

of B. Such an upper bound is readily determined as n� 1

due to the unit length restrictions on the n� 1 vectors xi.

Replacing � and its calculation by n� 1 in algorithm 1

will result in a reduction of computational time by not

having to calculate the eigenvalue decomposition. A

disadvantage is, however, that the resulting fitted

majorizing function might be much steeper, causing its

minimum to be much closer to the point of outset. In

other words, the steps taken by the majorization

algorithm will be smaller. Whether to use n� 1 instead

of � is thus a trade-off between computational time for

the decomposition and the step size.
We tested replacing � by n� 1 for 100 correlation

matrices of dimension 80� 80. These matrices were

randomly generated with the procedure of Davies and

Higham (2000). We allowed both versions of the

algorithm a computational time of less than 1 s. We

investigated d¼ 3, d¼ 6, d¼ 40 and d¼ 70. For all 400

cases, without a single exception, the version of the

algorithm with the full calculation of � produced a matrix

that had a lower value of f than the version with n� 1.

This result suggests that a complete calculation of the

largest eigenvalue is most efficient. However, these

results could be particular to our numerical setting. The

‘n� 1’ version of the algorithm remains an interesting

alternative and could potentially be beneficial in certain

experimental setups.

6. Conclusions

We have developed a novel algorithm for finding a

low-rank correlation matrix locally nearest to a given

matrix. The algorithm is based on iterative majori-

zation and this paper is the first to apply majorization

to the area of derivatives pricing. We have shown

theoretically that the algorithm converges to a stationary

point from any starting point. As an addition to the

previously available methods in the literature, majoriza-

tion, in our simulation setup, was more efficient than

either geometric programming, the Lagrange multiplier

technique or the parametrization method. Furthermore,

majorization is easier to implement than any method

other than modified PCA. The majorization method

efficiently and straightforwardly allows for arbitrary

weights.

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
0 5 10 15 20

Computational time(s)

L
N

(r
el

at
iv

e
re

si
d

u
al

)

m ajor pow er

m ajor

Figure 5. Convergence run for the use of the power method versus lambda¼max(eig(B)). The relative residual
is kJf ðXðiÞÞkF=kJf ðX

ð0ÞÞkF. Here n¼ 80 and d¼ 3.

660

R Pietersz and P J F Groenen QUANTITATIVE FINANCE

Acknowledgements

We are grateful for the comments of Antoon Pelsser and
seminar participants at ABN AMRO Bank, Belgian
Financial Research Forum 2004 (Brussels, Belgium),
ECMI Conference 2004 (Eindhoven, The Netherlands)
and MC2QMC Conference 2004 (Juan-les-Pins, France).

Appendix A: Proof of equation (12)

Define the algorithm 1 mapping x
ðkþ1Þ
i ¼ miðx

ðkÞ
i ,XðkÞÞ.

For ease of exposition we suppress the dependency on the
row index i and current state X(k), so xðkþ1Þ ¼ mðxðkÞÞ, with

mðxÞ ¼
z

kzk
, z ¼ ð�I� BÞxþ a,

where B depends on X according to (7), � is the largest
eigenvalue of B and a ¼

P
j:i 6¼j wijrijxj. We have locally

around xð1Þ, by first-order Taylor approximation,

xðkþ1Þ ¼ xð1Þ þDmðxð1Þ
ÞðxðkÞ � xð1ÞÞ þ OðkxðkÞ � xð1Þk2Þ:

By straightforward calculation, the Jacobian matrix
equals

Dmðxð1ÞÞ ¼ ðI� ðxð1ÞÞðxð1ÞÞ
T
Þ

1

kzð1Þk
ð�I� BÞ:

The matrix I� ðxð1ÞÞðxð1ÞÞ
T is denoted by Pxð1Þ . Then,

up to first order in �ðkÞ ¼ kxðkÞ � xð1Þk,

xðkþ1Þ � xð1Þ
 Pxð1Þ

1

kzð1Þk
ð�I� BÞðxðkÞ � xð1ÞÞ

¼ Pxð1Þ

1

kzð1Þk
ðð�I� BÞxðkÞ þ a

� ðð�I� BÞxð1Þ þ aÞÞ

¼ Pxð1Þ

1

kzð1Þk
ðzðkÞ � zð1ÞÞ

¼
kzðkÞk

kzð1Þk
Pxð1Þ ðxðkÞ � xð1ÞÞ, ðA1Þ

where in the last equality we have used Pxð1Þxð1Þ ¼ 0.
Note that, up to first order in �k, kzðkÞk=kzð1Þk
 1. The
term kPxð1Þ ðxðkÞ � xð1ÞÞk can be calculated by elementary
geometry, see figure A1. The projection operator Pxð1Þ

sets any component in the direction of xð1Þ to zero and

leaves any orthogonal component unaltered. The

resulting length kPxð1Þ ðxðkÞ � xð1ÞÞk is illustrated in

figure A1. If we denote this length by
, then

 ¼ sinð�Þ, where � is the angle as denoted in the figure.

Also, sinð�=2Þ ¼ �ðkÞ=2, from which we obtain

� ¼ 2 arcsinð�ðkÞ=2Þ. It follows that

 ¼ sinð2 arcsinð�ðkÞ=2ÞÞ

¼ 2 sinðarcsinð�ðkÞ=2ÞÞ cosðarcsinð�ðkÞ=2ÞÞ

¼ 2
�ðkÞ

2

� � ffi
1�

�ðkÞ

2

� �2
s

¼ �ðkÞ
ffi
1� ð�ðkÞÞ2=4

q
¼ �ðkÞ þ Oðð�ðkÞÞ2Þ: ðA2Þ

The result �ðkþ1Þ ¼ �ðkÞ þ Oðð�ðkÞÞ2Þ follows by combining

(A1) and (A2). œ

References

Borg I and Groenen P J F 1997 Modern Multidimensional
Scaling (Berlin: Springer)

Brace A, Ga̧tarek D and Musiela M 1997 The
market model of interest rate dynamics Math.
Finance 7 127–55

Brigo D 2002 A note on correlation and rank reduction,
downloadable from www.damianobrigo.it

Chu M T, Funderlic R E and Plemmons R J 2003 Structured
low rank approximation Linear Algebra Applications
366 157–72

Davies P I and Higham N J 2000 Numerically stable
generation of correlation matrices and their factors BIT
40 640–51

De Jong F, Driessen J and Pelsser A A J 2004 On the
information in the interest rate term structure and
option prices Rev. Derivatives Res. 7 99–127

De Leeuw and Heiser W 1977 Convergence of correction-
matrix algorithms for multidimensional scaling
Geometric Representations of Relational Data eds J C
Lingoes, E E Roskam and I Borg (Ann Arbor, MI:
Mathesis Press) pp 735–52

Dolan E D and Moré J J 2002 Benchmarking optimization
software with performance profiles Math. Programming
Ser. A 91 201–13

Dykstra R L 1983 An algorithm for restricted least squares
regression J. Am. Stat. Assoc. 87 837–42

Flury B 1988 Common Principal Components and Related
Multivariate Models (New York: Wiley)

Glunt W, Hayden T L, Hong S and Wells J 1990 An
alternating projection algorithm for computing the
nearest Euclidean distance matrix SIAM J. Matrix
Anal. Applications 11 589–600

Golub G H and Van Loan C F 1996 Matrix Computations
3rd edn (Baltimore, MD: John Hopkins University
Press)

Grubišić I and Pietersz R 2004 Efficient rank reduction of
correlation matrices Working paper Utrecht University,
Utrecht, downloadable from www.few.eur.nl/few/
people/pietersz

Han S-P 1988 A succesive projection method Math.
Programming 40 1–14

Hayden T L and Wells J 1988 Approximation by matrices
positive semidefinite on a subspace Linear Algebra
Applications 109 115–30Figure A1. The equality kP1ðxðkÞ � xð1ÞÞk ¼ �ðkÞ½1� ð�ðkÞÞ2=4�1=2.

661

QUANTITATIVE FINANCE Rank reduction of correlation matrices by majorization

Heiser W J 1995 Convergent computation by iterative
majorization: theory and applications in multidimen-
sional data analysis Recent Advances in Descriptive
Multivariate Analysis ed W J Krzanowski (Oxford:
Oxford University Press) pp 157–89

Higham N J 2002 Computing the nearest correlation
matrix—a problem from finance IMA J. Numer. Anal.
22 329–43

Hull J C and White A 2000 Forward rate volatilities, swap
rate volatilities, and implementation of the LIBOR
market model J. Fixed Income 10 46–62

Jamshidian F 1997 Libor and swap market models and
measures Finance Stochastics 1 293–330

Kiers H A L 2002 Setting up alternating least squares and
iterative majorization algorithms for solving various
matrix optimization problems Comput. Stat. Data Anal.
41 157–70

Kiers H A L and Groenen P J F 1996 A monontonically
convergent algorithm for orthogonal congruence
rotation Psychometrika 61 375–89

Miltersen K R, Sandmann K and Sondermann D
1997 Closed form solutions for term structure deriva-
tives with log-normal interest rates J. Finance 52 409–30

Rapisarda F, Mercurio F and Brigo D 2002 Parametrizing
correlations: a geometric interpretation Banca
IMI Working Paper downloadable from www.
fabiomercurio.it

Rebonato R 1999a Calibrating the BGM model Risk Mag.
March 74–9

Rebonato R 1999b Volatility and Correlation in the Pricing
of Equity, FX and Interest-Rate Options (Chichester:
Wiley)

Rebonato R 2002 Modern Pricing of Interest-Rate
Derivatives (Princeton, NJ: Princeton University Press)

Suffridge T J and Hayden T L 1993 Approximation by a
Hermitian positive semidefinite Toeplitz matrix SIAM
J. Matrix Anal. Applications 14 721–34

Wu L 2003 Fast at-the-money calibration of the LIBOR
market model using Lagrange multipliers J. Comput.
Finance 6 39–77

Zangwill W I 1969 Convergence conditions for nonlinear
programming algorithms Manage. Sci. (Theory Series)
16 1–13

Zhang Z and Wu L 2003 Optimal low-rank approximation
to a correlation matrix Linear Algebra Applications 364
161–87

662

R Pietersz and P J F Groenen QUANTITATIVE FINANCE

