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1 Introduction

Bermudan swaptions form a popular class of interest rate derivatives. The underlying
is a plain-vanilla interest rate swap, in which periodic fixed payments are exchanged
for floating LIBOR payments. Institutional debt issuers use interest rate swaps to revert
from floating to fixed interest rate payments, and vice versa. Often the issuers want to
reserve the right to cancel the swap. A cancellable swap can be valued by the following
parity relation. A cancellable interest rate swap is equal to a plain-vanilla interest rate
swap plus a callable interest rate swap with reversed cash flows. Thus a cancellable
swap can be valued when the callable swap can be valued. Such callable swap options
are referred to as Bermudan swaptions. Bermudan means that the exercise opportuni-
ties are at a discrete set of time points. A European swaption is an option to enter into
a swap at only a single exercise date.

In this paper, we study the pricing and hedging performance of two popular mod-
els for Bermudan swaptions, including the impact of correlation on hedging. Many
models have been proposed in the literature for valuation and risk management of
Bermudan swaptions. We distinguish three categories: short-rate models, Markov-
functional models and market models.

Short-rate models model the dynamics of the term structure of interest rates by
specifying the dynamics of a single rate (the short rate) from which the whole term
structure at any point in time can be calculated. Examples of short-rate models include
the models of Vasicek (1977), Cox et al. (1985), Dothan (1978), Black et al. (1990),
Ho and Lee (1986) and Hull and White (1990).

The Markov-functional model of Hunt et al. (2000) assumes that the discount factors
are a function of some underlying Markov process. The model is then fully determined
by no-arbitrage arguments and by requiring a fit to the initial yield curve and interest
rate option volatility.

Market models were introduced by Brace et al. (1997), Miltersen et al. (1997)
and Jamshidian (1997). The name ‘market model’ refers to the modelling of market
observable variables such as LIBOR rates and swap rates. The explicit modelling of
market rates allows for natural formulas for interest rate option volatility, that are con-
sistent with the market practice of using the formula of Black (1976) for caps (options
on LIBOR) and swaptions (options on swap rates).

Short-rate and Markov-functional models are usually1 implemented as models with
a single stochastic process driving the term structure of interest rates. A disadvantage
is then that the instantaneous correlation between interest rates can only be 1. Market
models, however, efficiently allow for any number of stochastic variables to be used,
so that any instantaneous correlation structure can be captured. There is substantial
evidence that the term structure of interest rates is driven by multiple factors (three,
four, or even more), see the review article of Dai and Singleton (2003). A more real-
istic description of reality may thus be expected from decorrelation in multi factor
models, which points to possibly better hedge performance. The question addressed
in this paper is whether the increase in hedge performance due to use of a multi factor

1 Two factor short rate models exist too, see for example Ritchken and Sankarasubramanian (1995).
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model is significant. To those that a priori dismiss the use of single factor models due
to their economic irrelevance by failure in capturing the multi factor dynamics of the
term structure of interest rates, we say: Models that are best for managing an interest
rate derivatives book are not necessarily models that are most realistic, rather they are
models that most reduce variance of profit and loss (P&L), thereby preserving wealth
in the most stable manner. We mention five articles that compare single and multi
factor models.

First, in favour of multi factor models, Longstaff et al. (2001) claim that short-rate
models, because of supposedly misspecified dynamics, lead to suboptimal exercise
strategies. This claim is supported by empirical evidence performed with the short-
rate models of Black et al. (1990) and Black and Karasinski (1991). The authors then
conclude that the costs to Wall Street firms of following single factor exercise strategies
could be several billion dollars.

Second, in favour of single factor models, Andersen and Andreasen (2001) claim
that the exercise strategy obtained from a properly calibrated single factor model only
leads to insignificant losses when applied in a two factor model.

Third, Driessen et al. (2003) are the first to investigate hedge performance. These
authors investigate two types of delta hedge instruments, (1) a number of delta hedge
securities, i.e. discount bonds, equal to the number of factors, and (2) a large set of
discount bonds, one for each security spanning the yield curve. They show that if the
number of hedge instruments is equal to the number of factors, then multi factor mod-
els outperform single factor models. If, however, the large set of hedging instruments
is used, which is the case in practice, then single factor models perform as well as
multi factor models in terms of delta hedging of European swaptions.

Fourth, Fan et al. (2003) show, for the case of the number of hedge instruments
equal to the number of factors, that higher factor models perform better than lower
factor models in terms of delta hedging of European swaptions and European swap-
tion straddles.2 The results of Fan et al. (2003) are thus consistent with the findings of
Driessen et al. (2003).

Fifth, Gupta and Subrahmanyam (2005) show that single-factor models provide
accurate pricing when calibrated to the volatility smile. For hedging, however, a sec-
ond stochastic factor yields better performance than a single-factor model calibrated to
smile. The primary difference relative to our paper is that Gupta and Subrahmanyam
(2005) use factor hedging (“within model hedging”) whereas we hedge with all instru-
ments with which the interest curve and volatility surface are built (“outside of model
hedging”).

Relative to Driessen et al. (2003) and Fan et al. (2003), we make the contribution of
also considering vega hedging and Bermudan-style swaptions rather than only delta
hedging and only European-style swaptions. A European product depends solely on
the marginal distributions of the swap rates, whereas a Bermudan product depends on
correlation and the joint distribution, too. The failure of single-factor models to fully
capture the correlation structure may thus potentially adversely affect hedging results,
and this issue has not yet been addressed in the literature, since Driessen et al. (2003)

2 A European swaption straddle consists of a position of long a payer swaption and long an otherwise
identical receiver swaption.
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and Fan et al. (2003) study either correlation-insensitive products or products that are
sensitive to correlation within the model only because the model is not fully calibrated
to the volatility of the canonical rate underlying the product. In contrast, we fit the
models exactly to a subset of European swaptions particular to a Bermudan swaption
rather than attempting a partial fit to the whole swaption volatility surface, as Driessen
et al. (2003) and Fan et al. (2003). The two practices of (1) fitting to an appropriate
set of swaptions, and (2) vega hedging, are probably more close in spirit to financial
practice. In fact, we show that the variance of P&L is significantly reduced when a
vega hedge has been set up additional to a delta hedge.

There is one drawback of using high factor models, however, which is lesser trac-
tability than low (one or two) factor models. For valuation in high factor models, we
must resort to Monte Carlo (MC) simulation. Valuation by MC is not a problem, but the
estimation of sensitivities (Greeks) can be less efficient. This is not due to the choice
of calibration, as can sometimes be the case as shown by Pietersz and Pelsser (2004),
since in this paper the safe option of time-constant volatility (but dependent on the
forward rates) is used. The less efficient estimation of sensitivities occurs if the payoff
along the path can change discontinuously as dependent on initial parameters, see, for
example, Glasserman (2004, Section 7.1). We show that such discontinuity appears in
the Longstaff and Schwartz (2001) algorithm for valuation of Bermudan-style options.
We consider two methods to improve the efficiency of sensitivity estimates. The com-
parison of hedge performance of single and multi factor models thus entails a trade-off
between more realistic correlation modelling and tractability.

For the Markov-functional model, the failure of not capturing a realistic instanta-
neous correlation structure can be remedied, in some sense, for Bermudan swaptions
and perhaps for other derivatives, too, as follows. In theory the price of a co-terminal
Bermudan swaption is dependent of and fully determined by the joint distribution of
the forward co-terminal swap rates at each of the exercise dates. In effect there are
thus n(n + 1)/2 stochastic variables that determine the price. In this paper, we use the
observation that the price of a Bermudan swaption is, up to first order approximation,
determined by the joint distribution of only the underlying spot co-terminal swap rates
at the exercise dates, see, e.g., Piterbarg (2004b, p. 67). There are only n such spot
co-terminal swap rates. The marginal distributions of these swap rates are governed
by the associated European swaption volatility quoted in the market, whereby, in a
log-normal model, we only need to specify correlation. We will call their correlation
the terminal correlation. A novel approximating formula is derived for the terminal
correlation in the Markov-functional model. The accuracy of the new formula is tested
numerically. The novel formula allows the Markov-functional model to be calibrated
to terminal correlation. We then equip a full factor swap market model with a param-
eterized instantaneous correlation matrix, calculate the resulting terminal correlation
and fit the Markov-functional model to this terminal correlation. Thus, although the
Markov-functional model fails to capture instantaneous correlation, it can be tweaked
such that it is fitted to product specific terminal correlation. Since such correct cor-
relation specification more or less determines the price of the Bermudan swaption,
it then no longer matters for pricing Bermudan swaptions whether the single factor
Markov-functional model is a realistic or unrealistic model of other parts of reality
in the interest rate market, outside of the volatilities and correlations of the relevant
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swap rates. Essentially, we have projected all relevant parts of reality correctly onto
the single factor Markov-functional model. With the thus fitted Markov-functional
model, and also with swap and LIBOR market models, we subsequently compare
hedge performance of Bermudan swaptions with real market data over a 1 year period.

By fitting to terminal correlation in Markov-functional models we loose the freedom
to specify time dependency of volatility. In contrast, market models allow specifica-
tion of time dependent correlation without affecting time dependency of volatility. We
also study the impact of time dependent correlation on hedging performance in market
models.

The research in this paper is not aimed at comparing the model generated Bermudan
swaption prices to real-life market quoted prices. Rather, the hypothetical viewpoint
is taken that swaps and European swaptions are liquidly traded in the market, and
Bermudan swaptions are less liquidly traded. The model is then used as an extrapola-
tion tool to determine a Bermudan swaption price consistent with swap and European
swaption prices, and such that the risk sensitivities provide a hedge of the former
in terms of the latter securities. In any case, the study in this paper is relevant for
non-standard Bermudan swaptions, for which the underlying has more exotic coupon
payments. Examples of such exotic coupon payments are capped floater (min(�L , K )

for some cap rate K and leverage �), inverse floater (max(K − �L , 0)) and range
accrual (αL , with α the fraction for which LIBOR within the accrual period is within
a certain range). These non-standard Bermudan swaptions are called callable LIBOR
exotics. The results of this paper may apply to many types of callable LIBOR exotics,
but further research will have to provide a definitive answer. Nonetheless, the results
of this paper are interesting for the study of callable LIBOR exotics, since these have
evolved from standard Bermudan swaptions.

It is very much relevant to compare hedge performance across models and corre-
lation specifications. Market data may lack for Bermudan swaptions. Perhaps some
institutions have access to Bermudan swaption market data, but we may safely state
that market data for callable LIBOR exotics most often lacks in current market environ-
ments. When market data lacks, then models are employed for valuation and hedging
purposes. A model then truly governs the profit and loss of the financial institution
with respect to the Bermudan swaption; we are dealing with genuine book values.
A different choice of model or of correlation specification may thus lead to different
behaviour of book value variability.

For both the swap market model and the Markov-functional model we initially use
the basic well-known non-smile versions. Smile is the phenomenon that for Euro-
pean options different Black-implied volatility is quoted for different strikes of the
option. As mentioned in Hunt et al. (2000, last paragraph of Section 3.2), the Markov-
functional model can be fitted to smile. We provide details, also for the swap market
model, and show that the resulting smile-fitting procedure is numerically efficient and
straightforward to implement. The smile Markov-functional model and smile swap
market model are subsequently fitted to USD swaption smile data. We then compare
empirically the impact of smile versus the impact of correlation.

The LIBOR Markov-functional model has been compared with the LIBOR market
model before by Bennett and Kennedy (2005). These authors show that the one factor
LIBOR Markov-functional model with mean reversion and the one factor separable
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LIBOR market model are largely similar in terms of dynamics and pricing. They also
show this for an approximated version of the LIBOR market model by drift approx-
imations, as introduced by Pietersz et al. (2004) and Hunter et al. (2001). Relative
to Bennett and Kennedy (2005) this paper makes the contribution of also comparing
multi factor models with the Markov-functional model. Moreover, we show how multi
factor models can a priori be compared to the Markov-functional model which is not
a straightforward extension from the one-dimensional case.

The study in this paper relates to the debate about suboptimality of single-factor
exercise strategies for Bermudan swaptions, where Longstaff et al. (2001) claim sin-
gle-factor exercise strategies lead to significant misvaluations whereas Andersen and
Andreasen (2001) and Svenstrup (2005) claim only insignificant misvaluations occur.
We show that the difference between single-factor and multi-factor exercise strategies
is insignificant for Bermudan swaptions not only for valuation performance but also
for hedging performance.

The remainder of the paper is organized as follows. First, we outline the comparison
methodology for the two models. The LIBOR and swap market models and Markov-
functional model are discussed, as well as the two Greeks calculation methods for
market models. Second, the data is described. Third, we numerically test the accuracy
of an approximating formula for the terminal correlation in the Markov-functional
model. Fourth, empirical comparison results are presented. Fifth, the impact of smile
is investigated. Sixth, we conclude.

2 Methodology

In this section, we first introduce some notation. Second, we set up the framework that
enables a comparison between multi factor and single factor models.

The type of Bermudan swaption that is considered here is the co-terminal version, as
opposed to, for example, the fixed maturity version. A co-terminal Bermudan swaption
is an option to enter into an underlying swap at several exercise opportunities, where
each swap ends at the same contractually determined end date. The maturity of the
swap entered into thus becomes smaller as the option is exercised later. In contrast, for
a fixed maturity Bermudan swaption, each swap that can be entered into has the same
contractually specified maturity and the respective end dates then differ. We consider a
Bermudan swaption on an underlying swap with n payments and a fixed rate F . Asso-
ciated with this swap is a tenor structure 0 < t1 < · · · < tn+1. The underlying swap
makes a payment Pi at time ti+1 depending on the LIBOR rate L(ti ) fixed at time ti for
i = 1, . . . , n. Denote the notional amount by N and the day count fraction for accrual
period [ti , ti+1] by αi . Introduce the variable φ ∈ {−1, 1} by φ = 1 for a pay fixed
swap and φ = −1 for a receive fixed swap. The payment Pi is then φαi (L(ti )− F)N .
The holder of the Bermudan swaption has the right to enter into the swap at the dates
t1, . . . , tn . If the holder exercises the option at time ti , then he or she will receive the
payments Pi , . . . , Pn . Alternatively, in the market the holder could have entered into
an otherwise equal swap but with fixed rate equal to the swap rate Si :n(ti ). Here Si : j

denotes the forward swap rate for a swap that start at ti and ends at t j+1. The holder
will thus only exercise the Bermudan at time ti if φ(Si :n(ti )− F) > 0. But even when
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the immediate exercise value is positive, the holder can nonetheless decide to hold
on to the option in view of a more favourable forward swap rate S j :n(ti ), j > i . It
follows that the price of a Bermudan swaption is dependent of and fully determined
by the joint distribution of the variables {S j :n(ti ) ; j = i, . . . , n, i = 1, . . . , n}. The
forward swap rates {S1:n, . . . , Sn:n} are called co-terminal since they all co-end at the
same termination date.

We contend that the main driver for the price of Bermudan swaptions is the joint
distribution of the realizations of the co-terminal swap rates {Si :n(ti ) ; i = 1, . . . , n}.
Ostrovsky (2002) calls this the diagonal process. The economic argument is that prima
facta, the holder of the option has to choose between receiving the payoffs of entering
into the swaps starting at t1, t2, . . . , tn and the associated payoffs are determined fully
by S1:n(t1), S2:n(t2), . . . , Sn:n(tn).

As is common in financial practice, we calibrate models to only those sections of
the market that are relevant to the product, rather than attempting to fit the models
to all available market data. We assume that any valuation model for the Bermu-
dan swaption is calibrated to the so-called diagonal of European swaptions that start
at ti and end at tn+1, i = 1, . . . , n. This means that the variance of the variables
{S1:n(t1), . . . , Sn:n(tn)} is already fully determined. Thus the diagonal process is fully
determined (given a normal or log-normal distribution) if we specify the correlation
matrix for the variables {Si :n(ti ) ; i = 1, . . . , n}. This correlation matrix will be
called the terminal correlation. In the next three sections, we discuss the LIBOR and
swap market models and the Markov-functional model, respectively. We show how
the terminal correlation can approximately be calculated in the swap market model
and the Markov-functional model. For the Markov-functional model we show how the
model can be calibrated to the terminal correlation.

The idea of terminal correlation is not new to finance. For example, Rebonato (2002,
Section 7.1.2) shows that it is the terminal and not the instantaneous correlation that
directly affects the price of swaptions. The terminal correlation itself is determined
both by the instantaneous correlation and the term structure of instantaneous volatility.
In Rebonato (1999, Section 11.4) it is shown that the terminal correlation is influenced
just as much, and even more, by the instantaneous volatility than by the instantaneous
correlation.

2.1 The LIBOR and swap market models

Within the swap market model, n forward swap rates are modelled as log-normal pro-
cesses under their respective forward measure, with forward swap rate Si :n satisfying,

dSi :n(t)

Si :n(t)
= σi :n(t)dW (i :n)(t), 〈dW (i :n)(t), dW ( j :n)(t)〉 = ρi :n, j :n(t)dt.

Here σi :n(·) denotes the instantaneous volatility function and W (i :n) denotes a Brown-
ian motion under the i th forward swap measure. The latter measure is associated with
a portfolio of discount bonds, weighted by the respective day count fractions, with
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maturity times corresponding to the payment times of the swap. The value of such a
portfolio of discount bonds is named the present value of a basis point (PVBP).

Within the LIBOR market model, n forward LIBORs are modelled as log-normal
processes under their respective forward measure, with forward LIBOR Li satisfying,

dLi (t)

Li (t)
= σi (t)dW (i+1)(t), 〈dW (i+1)(t), dW ( j+1)(t)〉 = ρi j (t)dt.

Here σi (·) denotes the instantaneous volatility function and W (i+1) denotes a Brownian
motion under the i th forward measure. The latter measure is associated with a discount
bond that matures at ti+1, the payment time of the i th LIBOR deposit. The LIBOR
market model is calibrated approximately to swaption volatility, via an approximation
of swaption volatility in terms of LIBOR volatility, see, e.g., Hull and White (2000).
By assumption of constant volatility and constant correlation (see below), the result-
ing calibration algorithm reduces to a simple bootstrap algorithm for determining the
LIBOR volatility levels.

Within both market models, we set the instantaneous volatility and correlation con-
stant over time, i.e., σi :n(t) = σi :n and ρi :n, j :n(t) = ρi :n, j :n for the swap model, and
σi (t) = σi and ρi j (t) = ρi j for the LIBOR model. These choices, relative to the time-
homogeneous case, will not, or only favourably, impact the results, as explained by the
following two arguments. First, a constant instantaneous volatility assumption leads
to efficiently estimated risk sensitivities, whereas certain specific time-homogeneous
specifications may not, as shown by Pietersz and Pelsser (2004). Second, our choice
of parametrization of the correlation matrix is both a constant and time-homogeneous
parametrization. Moreover, in Sect. 5.6 below we assess the impact of time varying
correlation.

The rank of the correlation matrix R = (ρi j )
n
i, j=1 determines the number of Brown-

ian motions (number of factors) driving the model. When an arbitrary correlation
matrix has been specified, generally such matrix has full rank n, but then if a number
of factors k < n be required, we are led to solve a rank reduction problem.3 To test the
two extreme cases, we consider only either rank 1 or full-rank correlation matrices,
allowing, respectively, correlation constant at 1 or a full fit to any correlation matrix.

We parameterize the instantaneous correlation matrix by, for i < j ,

ρi j (a) =
√

(e2ati − 1)/ti
(e2at j − 1)/t j

for a > 0, and ρi j (a) ≡ 1, for a = 0. (1)

This parametrization of instantaneous correlation allows for a simple calibration of
the Markov-functional model to the terminal correlation of the swap market model. In
fact, parametrization (1) has been chosen such that the resulting terminal correlation
of the swap market model exactly matches the terminal correlation of a Markov-
functional model with mean reversion parameter a. The correlation structure (1) is

3 For solving such rank reduction problems the reader is referred to Pietersz and Groenen (2004a), Pietersz
and Groenen (2004b), Grubišić and Pietersz (2007), Wu (2003), Rebonato (2002, Section 9) or Brigo (2002).
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ρi j (β) = exp(−β|ti − t j |) The fit error is the average absolute error over the entries

nonetheless a good choice, since we will show that, for a suitable choice of a, (1)
corresponds to a form that is often quoted in the literature, see, for example, Rebonato
(1998, Eq. (4.5), p. 83),

ρi j (β) = exp
(−β|ti − t j |

)
, for some β ≥ 0. (2)

We numerically fitted the form of (1) to (2), for 10 × 10 correlation matrices, where
n = 10 corresponds to the setting in the forthcoming hedge tests. In other words, fix
β, and then find a that solves

min
a≥0

n∑
i=1

n∑
j=1

| ρi j (a) − ρi j (β) |.

The relationship between the fitted a as dependent on β has been displayed in Fig. 1.
As can be seen from the figure, the fit is of good quality, obtaining an average absolute
error over the entries in the correlation matrix that is less than 0.02 for typical values
of β and a.

2.2 The Markov-functional model

We consider the swap variant of the Markov-functional model, see Hunt et al. (2000,
Section 3.4) for details on this variant. Within the (swap) Markov-functional model,
any model variable is a function of an underlying Markov process x . For example, for
a forward swap rate we have Si :n(t j ) = Si :n(t j , x(t j )). We assume that the driving
Markov process of the model is a deterministically time-changed Brownian motion,
satisfying
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dx(t) = τ(t)dW (t).

Here τ(·) denotes a deterministic function (that can be chosen piece-wise constant)
and W denotes a Brownian motion.

We now present an approximate formula for the terminal correlation. An argu-
ment explaining the formula is given, and in a later section we investigate the accu-
racy of the approximating formula. By a Taylor expansion, we have ln Si :n(ti , x) ≈
s(0)

i :n (ti )+s(1)
i :n (ti )x . Since correlation is unaltered by a linear transformation, the termi-

nal correlation of the swap rates is thus approximately equal to the terminal correlation
of the underlying Markov process,

ρ
(

ln Si :n(ti ), ln S j :n(t j )
) ≈ ρ

(
x(ti ), x(t j )

)
. (3)

By straightforward calculation, for i < j ,

ρ
(

x(ti ), x(t j )
) = Cov(x(ti ), x(t j ))√

Var(x(ti ))Var(x(t j ))
=

√√√√ ∫ ti
0 τ 2(t)dt∫ t j
0 τ 2(t)dt

. (4)

In fact, any functional of the Markov process can be linearized by a Taylor expansion
and, according to the argument above, would exhibit the same approximate termi-
nal correlation (4). The above theoretical argument is therefore not very strong. The
approximation, however, turns out to be accurate, as will be shown numerically in
Sect. 4.

In principle, the Markov-functional model can thus be approximately fitted to the
terminal correlation by minimization of the fitting error given a market-implied or his-
torically estimated terminal correlation matrix. The parameters for this minimization
problem are for example the n parameters governing the piece-wise constant function
τ(·). For ease of exposition we will, however, restrict our attention to the case of mean
reversion, i.e. τ(t) = exp(at), with a denoting the mean reversion parameter, see
Sect. 4 of Hunt et al. (2000). In this case we have, for i < j ,

ρ
(

x(ti ), x(t j )
) =

√
e2ati − 1

e2at j − 1
. (5)

To verify that the Markov-functional model is properly calibrated to terminal cor-
relation, in the swap market model this correlation is approximately calculated to be,
from (1), for i < j ,

∫ ti
0 σi :n(t)σ j :n(t)ρi j (t)dt√∫ ti
0 σ 2

i :n(t)dt
∫ t j

0 σ 2
j :n(t)dt

= σi :nσ j :nρi j ti√
σ 2

i :ntiσ 2
j :nt j

= ρi j

√
ti
t j

=
√

e2ati − 1

e2at j − 1
. (6)

The specification (1) of the instantaneous correlation of the swap market model was
constructed such that the (approximate) terminal correlation (5) of the Markov-func-
tional model with mean reversion parameter a is equal to the (approximate) terminal
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correlation (6) in the swap market model with parameter a. Note that this correspon-
dence does not necessarily hold for the LIBOR market model, though we nonetheless
employ it in the comparison tests.

2.3 Estimating Greeks for callable products in market models

The algorithm of Longstaff and Schwartz (2001) (LS) renders the numeraire rela-
tive payoff along a simulated path discontinuously dependent on initial input. The
discontinuity in the LS algorithm stems from the estimated optimal exercise index
chosen from a discrete set of possible exercise opportunities. Such a discrete choice
is inherently discontinuously dependent on initial input. Any discontinuity in a sim-
ulation may cause finite difference estimates of sensitivities to be less efficient, see
Glasserman (2004, Section 7.1). We describe two methods that enhance the efficiency
of finite difference estimates. These are:

(1) Finite differences with optimal perturbation size.
(2) Constant exercise method.

The two methods are discussed below in more detail. We denote by V the base value
of the derivative, i.e., the value of the derivative in the unperturbed model.

Method (1), the finite differences method is best described as the bump-and-revalue
approach. Initial market data is perturbed by amount ε, the model is re-calibrated
and subsequently priced at V (ε). The finite difference estimate of the Greek is then
(V (ε)−V )/ε. The mean square error (MSE) of the finite difference estimator is depen-
dent on the chosen perturbation size ε. If the numeraire relative payoff along the path is
continuously dependent on initial input, then least MSE is obtained when ε is selected
as small as possible (though larger than machine precision), see Glasserman (2004). If
the payoff is discontinuous, however, then there is a trade-off between increasing and
decreasing ε, leading to an optimal (‘large’ and positive) choice of ε that attains least
MSE, see Glasserman (2004). After some preliminary testing, we found perturbation
sizes of roughly 1 basis point (bp, 0.01%) for delta and 5 bp for vega.

Method (2) we consider, is named the constant exercise method. Here, for the
base valuation we record per path when the exercise decision takes place. In the per-
turbed model, we no longer perform LS least-squares Monte Carlo, but rather use
the very same exercise strategy as in the base valuation case. The constant exercise
method, introduced in Piterbarg (2003), provides stable and unbiased estimate of risk
sensitivities, see Piterbarg (2004a, Proposition 2) for a formal proof. Moreover, the
method is straightforward to implement, and more efficient, since in re-valuations
linear regressions for the LS algorithm are no longer required. Note that the constant
exercise method renders a re-valuation continuously dependent on initial market data,
provided the underlying swap payoff is continuous, which is the case for the Ber-
mudan swaption studied in this paper. From the discussion on perturbation sizes for
method (1), it then follows that a least-MSE finite difference estimate of sensitivities
is obtained by employing perturbation sizes that are as small as possible. We use 10−5

bp for both delta and vega.
We end this section by a brief discussion of other methods for calculation of Greeks

available in the literature. These methods could not straightforwardly be extended to
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the situation of our investigations. Discussed are the path-wise method Glasserman
and Zhao (1999), the likelihood ratio method Glasserman and Zhao (1999), the Mal-
liavin calculus approach Fournié et al. (1999) and the utility minimization approach
Avellaneda and Gamba (2001). The path-wise method cannot handle discontinuous
payoffs. The likelihood ratio and Malliavin calculus method both require that the
matrix of instantaneous volatility be invertible. For the market model setting, we
have an n × d matrix with n the number of forward rates and d the number of sto-
chastic factors. Usually d < n and most often d � n, which rules out inverting
the instantaneous volatility matrix. Glasserman and Zhao (1999, Section 4.2) have
resolved the non-invertibility issue only for a particular case, that does not apply
to our case: When the payoff is dependent only on the rates at their fixing times,
{S1:n(t1), S2:n(t2), . . . , Sn:n(tn)}. Finally, the utility minimization approach simply cal-
culates a different sort of risk sensitivity and is thus altogether biased.

3 Data

We describe the data used in the empirical comparison and smile-impact tests. All
market data was kindly provided by ABN AMRO Bank.

First, we describe the data used in the comparison test. For the comparison test, we
use an arbitrarily chosen time-span, 16 June 2003–2004, of USD data of mid-quotes
for deposit rates, swap rates and at-the-money (ATM) swaption volatility. We use the 1
and 12 months deposit rates and the 2Y, 3Y, 4Y, 5Y, 7Y, 10Y and 15Y swap rates. The
discount factors are bootstrapped from market data. Any discount factors required at
dates not available from the bootstrap are calculated by means of linear interpolation
on zero rates. A statistical description of the swaption volatility data is displayed in
Table 1. Any volatility required at expiries and tenors not available from Table 1 are
calculated by means of linear surface interpolation.

Second, we describe the data used in the smile-impact test, in which we will con-
sider a 6 year deal. We use USD data for 21 February 2003. The discount factors have
been displayed in Table 2. The swaption volatility against strike and expiry has been
displayed in Table 3.

4 Accuracy of the terminal correlation formula

The terminal correlation in the Markov-functional model is estimated via the terminal
covariance. We have, for i < j , for any measure,

E
[
ln Si :n(ti ) ln S j :n(t j )

] = E
[

ln Si :n(ti )E
[
ln S j :n(t j )|F(ti )

] ]
. (7)

The above equality follows from the F(ti )-measurability of ln Si :n(ti ). Expression (7)
can be calculated on a lattice. We estimate (7) by calculating for each grid point at
time ti the conditional expectation E[ln S j :n(t j )|F(ti )], subsequently we integrate the
result multiplied by ln Si :n(ti ) to obtain the required expectation.

The accuracy of the approximate formula (3) is tested for a 40 years deal, with EUR
market data of 8 February 1999, for which the swaption volatility level is on average
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Table 2 Discount factors for the USD data of 21 February 2003

1Y 2Y 3Y 4Y 5Y 6Y

0.98585 0.96223 0.92697 0.88571 0.84286 0.79986

Table 3 Swaption volatility, in percentages, against strike and expiry for the USD data of 21 February
2003

Exp. Strike, in offset in basis points from the ATM forward swap rate

−300 −200 −100 −50 0 50 100 200 300

1Y 58.78 45.41 37.34 35.19 33.15 32.55 31.99 31.32 31.21

2Y 43.65 38.62 32.57 30.82 29.13 28.59 28.10 27.46 27.30

3Y 40.72 35.12 30.01 28.46 26.95 26.12 25.31 25.03 24.75

4Y 38.65 32.41 27.96 26.59 25.23 24.75 24.31 23.72 23.52

5Y 37.17 30.92 26.66 25.36 24.08 23.63 23.20 22.63 22.43

All displayed swaptions co-terminate 6 years from today. Here ‘Exp.’ denotes Expiry

Table 4 Error analysis of the terminal correlation measured in the Markov-functional model versus given
by the approximate formula ρ(ln Si :n(ti ), ln S j :n(t j )) ≈ ρ(x(ti ), x(t j )), for a 40 years annual-paying deal,
thus for a 40 × 40 correlation matrix

M.r. (%) Max. abs. err. Max. rel. err. (%) Avg. abs. err. Avg. rel. err. (%)

0 1.6 × 10−4 0.0190 4.5 × 10−5 0.0076

5 5.0 × 10−5 0.0072 1.2 × 10−5 0.0030

10 2.1 × 10−5 0.0032 3.0 × 10−6 0.0012

15 1.0 × 10−5 0.0018 9.8 × 10−7 0.0006

20 5.7 × 10−6 0.0011 4.0 × 10−7 0.0003

m.r. mean reversion, max. maximum, abs. absolute, err. error, rel. relative, and avg. average

14%. The test is performed at various mean reversion levels, 0, 5, 10, 15, and 20%.
The terminal correlation matrix within the Markov-functional model is calculated
numerically on a lattice under the terminal measure and subsequently compared to the
correlation matrix given by the approximate formula (3). Note that the comparison
contains two sources of error: First, the approximation (3), and, second, the numerical
error inherent in the lattice calculation. In Table 4, various descriptive data for the
comparison test have been displayed. Reported are, over the entries in the matrix, the
maximum absolute and relative errors, and the average absolute and relative errors.
As can be seen from Table 4, these errors are quite small, especially considered over
a 40 years horizon.

5 Empirical comparison results

In this section, we report the results of our empirical comparison. The deal description
is given in Table 5. For market models we use the terminal measure, 10,000 simulation
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Table 5 The Bermudan
swaption deal used in the
comparison

Trade: Bermudan swaption
Trade type: Receive fixed

Notional: USD 100 m

Start date: 16-Jun-2004

End date: 16-Jun-2014

Fixed rate: 3.2%

Index coupon: Per annum

Index basis: ACT/365

Roll type: Modified following

Callable: At fixing dates

paths (5,000 plus 5,000 antithetic) and 10 stochastic factors (a full factor model), bar
when a = 0%, we use a single factor model. To determine the exercise boundary
in market models, we use the least-squares Monte Carlo algorithm of Longstaff and
Schwartz (2001), with all forward rates as explanatory variables, i.e., all available
LIBOR rates for the LIBOR market model and all available swap rates for the swap
market model. The reason for using all available rates as explanatory variables is that
the multi factor nature of the market models needs be retained (if at all present; for
a = 0% a single factor model must be used). As basis functions we use a constant
and one linear term per explanatory variable, {1, X1, . . . , Xm}, where m denotes the
number of explanatory variables. The NPVs, deltas and vegas of the deal are calcu-
lated at each trade date from 16 June 2003 till 15 June 2004, inclusive, for the mean
reversion levels 0, 5 and 10%. A price comparison has been displayed in Fig. 2. As
can be seen from the figure, the Markov-functional and market models are similar in
terms of NPV, and prices co-move and stay together over time.

The models are, more importantly, compared in terms of hedge performance. With
respect to hedging, we use so-called bucket hedging rather than factor hedging. With
factor hedging, the number of hedge instruments equals the number of factors in the
model. Risk sensitivities are calculated by perturbing only the model intrinsic factors.
With bucket hedging, the number of hedge instruments equals the number of market
traded instruments to which the model has been calibrated to. Risk sensitivities are
calculated by perturbing the value of a market traded asset, and then by re-valuation of
the derivative in a model re-calibrated to the perturbed market data. The reasons that
we employ bucket hedging rather than factor hedging are twofold. First, Driessen et
al. (2003, Section 7.3) show that bucket hedging outperforms factor hedging for caps
and European swaptions (for delta hedging). Second, bucket hedging corresponds to
financial practice.

Two types of hedges are considered:

(1) Delta hedging only.
(2) Delta and vega hedging.

The delta hedge is set up in terms of discount bonds, one discount bond for each tenor
time associated with the deal. In the case of the deal of Table 5, there are 11 such
discount bonds. To set up a joint delta and vega hedge, we proceed in the following
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Fig. 2 Bermudan swaption values per trade date in the period 16 June 2003 to 16 June 2004, for the swap
Markov-functional model, and for the LIBOR and swap market models, for correlation specifications 0, 5
and 10%

four steps. First, we calculate the vegas of the 10 underlying European swaptions.
Second, we calculate the amount of each of the European swaptions needed to have
zero portfolio vega for all underlying volatilities. Third, the aggregate delta position,
of the Bermudan and European swaptions, is calculated. Fourth, discount bonds are
acquired to obtain zero delta exposure for all 11 delta buckets.

The risk sensitivities are calculated in two ways, as detailed in Sect. 2.3, (1) finite
differences with perturbation sizes 1 bp for delta and 5 bp for vega (referred to as
‘large’ perturbation sizes), and, (2) constant exercise method, with perturbation sizes
10−5 bp for both delta and vega (referred to as ‘small’ perturbation sizes).

We note here that the computational time of calculating the NPV, the 11 deltas
and the 10 vegas, at any particular trade date, is around 92 s for market models4 with
ordinary LS, around 42 s for market models with constant exercise method, versus 3 s
for the Markov-functional model. This difference of computational time is inherent to
the (least squares) Monte Carlo implementation of market models versus the lattice
implementation of Markov-functional models. Of course, such lattice implementation
is allowed only because of the mild path-dependency of Bermudan swaptions.

The hedge portfolios are set up at each trade day and the change in portfolio value on
the next trade day is recorded. The hedge test results are ordered in three subsections.

4 There are fast algorithms for implementation of market models with Monte Carlo, see Joshi (2003) for
LIBOR models, and Pietersz and van Regenmortel (2006, Section 5 ) for swap models. Needless to say, we
used these fast algorithms.
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Fig. 3 Comparison of delta versus delta and vega hedging. Box-whisker plots for the change in value
(in USD) of the hedged portfolio. The percentages denote the mean reversion level (MF) or correlation
parametrization parameter (LMM and SMM). For market models, we use the constant exercise method,
with ‘small’ perturbation sizes

5.1 Delta hedging versus delta and vega hedging

The performance of delta hedging versus delta and vega hedging is compared. Box-
whisker plots, for the change in hedge portfolio value, have been displayed in Fig. 3, for
various models and mean reversion or correlation parametrization parameters. Here,
MF, LMM, and SMM denote, respectively, Markov-functional model, LIBOR market
model and swap market model. Box-whisker plots provide a convenient representation
of a distribution, by displaying five of its key characteristics: the minimum, median,
and maximum values, and the first and third quartiles.

We draw the following conclusions from the box-whisker plots in Fig. 3:

1. Delta hedging significantly decreases variance of P&L.
2. Vega hedging additional to delta hedging significantly further decreases variance

of P&L.

It is clear that a joint delta and vega hedge by far outperforms a delta hedge. Therefore
we omit, in the remainder of the paper, further study of delta hedges without a vega
hedge.

5.2 “Large” perturbation sizes versus constant exercise method with “small”
perturbation sizes

The performance of joint delta-vega hedging is compared as dependent on the method
used to calculate risk sensitivities. Box-whisker plots for the change in value of the
delta-vega hedged portfolios, with a mean reversion of 0% or a correlation parameter
of 0%, have been displayed in Fig. 4. Here, ‘const. ex.’ and ‘pert.’ denote ‘constant
exercise method’ and ‘perturbation’, respectively. The analogous box-whisker plots
for mean reversion or correlation parameters 5 and 10% are similar. We draw the
following conclusions from the box-whisker plots in Fig. 4.
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Fig. 4 ‘Large’ perturbation sizes versus constant exercise method with ‘small’ perturbation sizes. Box-
whisker plots for the change in value (in USD) of the hedged portfolio. Mean reversion or correlation
parameter of 0%

1. The estimation of sensitivities by finite differences over MC with ‘large’ pertur-
bation sizes adversely affects the variance of P&L for hedging in market models.

2. The best performing Greek calculation method, for delta-vega hedging, is the
constant exercise method, for which we approximately obtain similar results as
with the Markov-functional model.

3. The use of the constant exercise method enables proper functioning of market
models as risk management tools, for callable products on underlying assets that
are continuously dependent on initial market data.

It is clear that the constant exercise method with ‘small’ perturbation sizes by far
outperforms ordinary LS with ‘large’ perturbation sizes. The theoretical explanation
of this out-performance is related to two issues. First, the classical LS algorithm causes
a discontinuity in the numeraire relative payoff along the path, which renders finite
difference estimates of sensitivities to be less efficient. Second, ‘larger’ perturbation
sizes cause more variance in the finite difference estimate of a sensitivity, since the
correlation between the payoff in the original and perturbed models becomes smaller.
These two effects lead to more Monte Carlo caused randomness in the contents of the
hedge portfolio, which ultimately leads to increased variance of P&L, as can be seen
in Fig. 4.

We omit, in the remainder of the paper, further study of ordinary LS with ‘large’
perturbation sizes.

5.3 Delta-vega hedge results

The performance of joint delta-vega hedging is compared across models and mean
reversion or correlation specifications. For the market models, we use the constant
exercise method with ‘small’ perturbation sizes. Box-whisker plots for the change in
value of the delta-vega hedged portfolios have been displayed in Fig. 5. Numerical
details for Fig. 5 may be found in Appendix 1. We draw the following conclusions
from the box-whisker plots in Fig. 5.
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Fig. 5 Delta-vega hedge results. Box-whisker plots for the change in value (in USD) of the hedged portfo-
lio. The percentages denote the mean reversion level (MF) or correlation parametrization parameter (LMM
and SMM). For market models, we use the constant exercise method, with ‘small’ perturbation sizes
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Fig. 6 Monthly hedge results. Box-whisker plots for the change in value (in USD) of the hedged portfolio.
Mean reversion or correlation parameter of 5%

1. The impact of mean reversion or correlation parameter specification on hedge
performance is not very large.

2. The hedge performance for all three models is very similar.

5.4 Impact of monthly hedging

The hedge studies in Sects. 5.1–5.3 are based on rebalancing the hedge portfolio every
trade day. In this section, we assess the impact of rebalancing at monthly intervals.
We extended the data set to include the period from 9 February 1999 to 16 June 2003.
In total, there are 65 trade days separated by monthly intervals. Moving from approx-
imately 1 day intervals to approximately 30 days intervals, we expect an increase in
variance of profit and loss of about

√
30 ≈ 5.5. The results for monthly hedging are

displayed in Fig. 6. Indeed, the scale of Fig. 6 relates to the scale of Fig. 5 (daily
hedging) as approximately 5.5 to 1.
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Fig. 7 Degree 1 versus degree 2 basis functions (left four plots) and time dependent versus constant cor-
relation (right most plot). Box-whisker plots for the change in value (in USD) of the hedged portfolio.
Correlation parameter of 5%

5.5 Higher order basis functions for least-squares MC

We investigate the impact of higher order polynomials for least-squares Monte Carlo
simulation. The basis functions used in Sects. 5.1–5.4 are a constant and one linear
term per explanatory variable, {1, X1, . . . , Xm}, which we refer to as “degree 1” basis
functions. The set of “degree 2” basis functions consists of degree 1 basis functions
plus functions Xi X j for 1 ≤ i ≤ j ≤ m. Note that quadratic functions X2

i are included
in this definition. The hedge results for degree 1 versus degree 2 basis functions are
displayed in the left four box-whisker plots of Fig. 7. The results show that including
higher order basis functions does not have a significant effect on the resulting reduction
of variance of P&L.

5.6 Time varying correlation

For the hedge tests in Sects. 5.1–5.5 we use constant correlation in market models as
specified in (1). Several authors (e.g., Andersen and Brotherton-Ratcliffe 2005; Li and
Zhao 2006) consider time varying correlation. To assess the impact of time varying
correlation, we use a two-factor parametrization due to Andersen and Brotherton-
Ratcliffe (2005, Section 5.2):

ρi j (t) = λi (t) · λ j (t)√||λi (t)|| ||λ j (t)||
,

with the two-dimensional vector λi (t) given by:

λi (t) =
(
γ11 + γ12e−γ13(ti −t), γ21 + γ22e−γ23(ti −t)

)
.

We use the same parameters as Andersen and Brotherton-Ratcliffe (2005): γ11 =
1.5%, γ12 = 2.5%, γ13 = 5%, γ21 = 1%, γ22 = −5%, γ23 = 10%. Given the lack of
sensitivity to correlation in the hedge results of Fig. 5 we expect little impact from time
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varying correlation. The hedge results with time varying correlation are displayed in
the right most box-whisker plot of Fig. 7. The results show that time dependent cor-
relation indeed has an insignificant impact on the reduction of variance of P&L.

6 The impact of smile

In this section, we provide details on how the Markov-functional and swap market
models can be fitted to smile and investigate the impact of smile relative to the impact
of correlation cq. mean reversion on the prices of Bermudan swaptions. As a concrete
example, the displaced diffusion smile dynamics of Rubinstein (1983) are considered.
In a displaced diffusion setting, the forward swap rate is modelled as

Si :n(t) = S̃i :n(t) − ri ,
dS̃i :n(t)

S̃i :n(t)
= σi :ndW (i :n)(t), (8)

with ri the displacement parameter and W (i :n) a Brownian motion under the forward
swap measure associated with Si :n . The solution to stochastic differential equation
(SDE) (8) is

Si :n(t) = −ri + (Si :n(0) + ri ) exp

{
σi :n W (i :n)(t) − 1

2
σ 2

i :nt

}
. (9)

The displaced diffusion extension is first discussed for the Markov-functional model
and second for the swap market model. The Markov-functional model is fitted to vol-
atility by fitting the digital swaptions. The value V (i) of the digital swaption on swap
rate Si :n(ti ) with strike K is given by the familiar formula in the Black world

V (i) = PVBPi :n(0)N (d(i)
2 ), d(i)

2 = log(K/Si :n(0)) − 1
2σ 2

i :nti
σi :n

√
ti

(10)

where N (·) denotes the cumulative normal distribution function and where PVBPi :n
denotes the present value of a basis point, PVBPi :n = ∑n

k=i αi Bi+1(t). Here αi

denotes the day count fraction for period [ti , ti+1] and Bi (t) denotes the time-t value
of a discount bond for payment of one unit of currency at time ti . In the displaced
diffusion world, the value Ṽ (i) of the digital swaption is given by a displaced forward
swap rate and strike

Ṽ (i) = PVBPi :n(0)N (d̃(i)
2 ), d̃(i)

2 =
log

(
Si :n(0)+ri

K+ri

)
− 1

2σ 2
i :nti

σi :n
√

ti
. (11)

The implementation of a non-smile Markov-functional model has to be changed only
in two places to incorporate displaced diffusion smile dynamics. First, the functional
form of the terminal discount bond Bn+1 at time tn is determined, using the equation
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Bn+1(tn) = 1

1 + αn Sn:n(tn)
. (12)

In a non-smile Markov-functional model, we then have

Bn+1(tn, x(tn)) = 1

1 + αn Sn:n(0) exp{− 1
2σ 2

n:ntn + σn:n
e2atn −1

x(tn)} , (13)

this is exactly the penultimate equation on page 399 of Hunt et al. (2000). In a displaced
diffusion setting, we substitute (9) into (12) and then (13) becomes

B̃n+1(tn, x(tn)) = 1

1 + αn[−ri + (Sn:n(0) + ri ) exp{− 1
2σ 2

n:ntn + σn:n
e2atn −1

x(tn)}] ,

Second, the functional forms of the swap rates Si :n(ti , ·), i = 1, . . . , n − 1 are deter-
mined, by inverting the value of the digital swaption against strike. In a non-smile
Markov-functional model, we invert (10) and obtain

Si :n(ti , x(ti )) = Si :n(0) exp

{
−1

2
σ 2

i :nti − σi :n
√

ti N−1

(
J (i)(x(ti ))

PVBPi :n(0)

)}
,

with J (i)(x) denoting the value of a digital swaption with strike x in the model, calcu-
lated by induction from i = n − 1, . . . , 1. In a displaced diffusion setting, we invert
(11) to obtain

Si :n(ti , x(ti )) = −ri+(Si :n(0)+ri ) exp

{
−1

2
σ 2

i :nti−σi :n
√

ti N−1

(
J (i)(x(ti ))

PVBPi :n(0)

)}
.

Next, the displaced diffusion swap market model is made reference to. The dynam-
ics of the forward swap rates under the terminal measure in general smile models can
be found in Jamshidian (1997, Eq. (6), p. 320).

We fit the displaced diffusion model to the market data of Table 3 and find the vol-
atility parameters σi :n and displacement parameters ri as listed in Table 6. The fitted
volatility and fit errors have been displayed in Table 7. As can be seen from the table,
the displaced diffusion model fits the market well for ATM and out-of-the-money
(OTM) options (fit error less than a percent), but not so well for in-the-money (ITM)
options, for which the model underfits the market up to 21%. We note here that the
disability of obtaining a perfect fit to the smile volatility data is due solely to the dis-
placed diffusion model, and not to the Markov-functional or market models. An exact
fit to the swaption smile surface can be obtained, for example, with the relative-entropy
minimization framework of Avellaneda et al. (1997). To benchmark the implementa-
tion of the displaced diffusion Markov-functional and swap market models, European
swaptions are valued in (1) a constant volatility model with the volatility associated
with the expiry and strike of the swaption and (2) the smile model. The results of this
test for the Markov-functional model have been displayed in Table 8. The benchmark
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Table 6 Volatility σi :n and displaced diffusion ri parameters fitted to USD market data of 21 February
2003

i 1 2 3 4 5

Expiry 1Y 2Y 3Y 4Y 5Y

Tenor 5Y 4Y 3Y 2Y 1Y

σi :n 28.29% 21.76% 18.28% 16.08% 14.62%

ri 0.71% 1.55% 2.33% 2.89% 3.39%

Table 7 Fitted swaption volatility and fit errors with the displaced diffusion model, in percentages, against
strike and expiry for the USD data of 21 February 2003

Exp. Strike, in offset in basis points from the ATM forward swap rate

−300 −200 −100 −50 0 50 100 200 300

Fitted swaption volatility
1Y 37.82 35.11 33.88 33.48 33.15 32.89 32.66 32.30 32.03

2Y 34.32 31.57 30.07 29.54 29.11 28.74 28.43 27.92 27.51

3Y 32.23 29.58 28.02 27.45 26.98 26.57 26.21 25.63 25.16

4Y 30.34 27.83 26.29 25.72 25.23 24.82 24.46 23.85 23.37

5Y 29.17 26.74 25.21 24.63 24.14 23.72 23.35 22.73 22.23

Absolute fit errors, model volatility minus market volatility

1Y −20.96 −10.29 −3.46 −1.71 0.00 0.34 0.67 0.98 0.82

2Y −9.33 −7.05 −2.50 −1.28 −0.02 0.15 0.33 0.45 0.21

3Y −8.49 −5.54 −1.99 −1.01 0.02 0.44 0.90 0.60 0.41

4Y −8.31 −4.58 −1.67 −0.87 0.00 0.06 0.14 0.13 −0.15

5Y −8.00 −4.18 −1.45 −0.73 0.06 0.09 0.14 0.10 −0.20

All displayed swaptions co-terminate 6 years from today. Here ‘Exp.’ denotes Expiry

is of high quality, though there are some slight differences due to numerical errors in
the grid calculation. The benchmark results for the swap market model are of similar
good quality.

Subsequently, Bermudan swaptions are priced with varying strikes and otherwise
specified in Table 9. The Bermudan swaptions are priced in the Markov-functional and
SMM models, and in their displaced diffusion counterparts, at various mean reversion
or correlation parameter levels. In the non-smile models, there are two possibilities
for choosing the volatilities. First, the volatilities can be used that correspond to the
strike of the Bermudan swaption. Second, the ATM volatilities can be used, regardless
of the strike of the Bermudan swaption. The calculated prices have been displayed in
Table 10. The results in the table show that the impact of correlation is significant,
since a 10% change in mean reversion can cause a change in value equal to a parallel
volatility shift of 1%. The impact of correlation is comparable to that reported by Choy
et al. (2004, Table 11 ), though the latter authors name this impact ‘non-substantial’.
The impact of smile is, for the deal considered, much larger than the impact of cor-
relation and mean reversion, since 10% mean reversion is usually a high level when
observed in the market. In terms of vega, the smile impact can be as large as a parallel
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Table 8 Benchmark results for the displaced diffusion Markov-functional model: European swaption
prices in a constant volatility model versus a smile model

Exp. Strike, in offset in basis points from the ATM forward swap rate

−300 −200 −100 −50 0 50 100 200 300

Constant volatility Markov-functional model
1Y 328 52,561 606,777 1,304,851 2,340,174 3,689,485 5,298,889 9,053,757 13,203,090

2Y 24,540 249,639 1,018,213 1,683,785 2,542,759 3,580,442 4,773,685 7,521,975 10,595,480

3Y 84,026 391,072 1,098,965 1,629,508 2,276,285 3,030,862 3,881,504 5,818,070 7,984,799

4Y 106,959 367,457 878,156 1,237,121 1,663,274 2,151,967 2,697,073 3,928,998 5,305,394

5Y 82,725 235,077 504,020 684,928 895,662 1,134,225 1,398,093 1,990,497 2,650,706

Displaced diffusion Markov-functional model

1Y 322 52,255 605,446 1,303,083 2,338,220 3,687,599 5,297,237 9,052,727 13,202,556

2Y 24,201 248,060 1,015,124 1,680,221 2,538,993 3,576,743 4,770,238 7,519,330 10,593,675

3Y 83,169 388,983 1,095,781 1,626,018 2,272,668 3,027,290 3,878,101 5,815,249 7,982,667

4Y 105,990 365,588 875,586 1,234,362 1,660,433 2,149,153 2,694,366 3,926,683 5,303,550

5Y 82,154 234,125 502,792 683,627 894,329 1,132,903 1,396,815 1,989,378 2,649,787

The notional is USD 100 million. All displayed swaptions co-terminate 6 years from today. Here ‘Exp.’
denotes Expiry

Table 9 The Bermudan
swaption deal used in the test
of impact of smile

Trade: Bermudan swaption
Trade type: Receive fixed

Notional: USD 100 m

Valuation date: 21-Feb-2003

Start date: 21-Feb-2004

End date: 21-Feb-2009

Index coupon: Per annum

Index basis: ACT/365

Roll type: Modified following

Callable: At fixing dates

shift in volatility of −8 to 1%, for per-strike volatilities, and −1 to 6%, for ATM vol-
atilities. Furthermore, the displaced diffusion smile model underfitted the volatility
smile observed in the market. Since increasing the volatility usually leads to a higher
value for Bermudan swaptions,5 the impact of smile can thus be even higher, when
ATM volatilities are used.

7 Conclusions

We investigated the impact of correlation on the pricing and hedge performance of
Bermudan swaptions for various models. We showed how the Markov-functional

5 Pietersz and Pelsser (2004, Appendix) explain that Bermudan swaptions can in certain particular circum-
stances have negative vega.
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Table 10 Prices of Bermudan swaptions in smile versus non-smile models with various correlation/mean
reversion assumptions

Strike

2% 3% 4% 5% 6%

MF-MR=0% 420,954 1,072,043 2,452,060 5,047,951 8,573,535

Vega 1% MF 34,609 68,118 96,242 93,513 68,477

SMM-a=0% 407,667 1,053,210 2,443,332 5,065,794 8,605,508

SMM SE-a=0% 7,551 12,964 17,204 16,032 10,625

Vega 1% SMM 33,105 66,154 97,141 91,850 67,194

MF-MR=5% 436,518 1,103,269 2,495,689 5,090,486 8,606,769

Diff. in vega 0.4 0.5 0.5 0.5 0.5

SMM-a=5% 407,922 1,060,731 2,461,625 5,101,071 8,657,349

SMM SE-a=5% 7,386 12,764 17,228 16,244 11,243

Diff. in vega 0.0 0.1 0.2 0.4 0.8

MF-MR=10% 452,417 1,135,155 2,540,694 5,135,323 8,642,685

Diff. in vega 0.9 0.9 0.9 0.9 1.0

SMM-a=10% 405,819 1,062,986 2,485,969 5,142,268 8,708,570

SMM SE-a=10% 7,202 12,488 17,090 16,359 11,873

Diff. in vega −0.1 0.1 0.4 0.8 1.5

Smile MF 148,130 747,270 2,347,664 5,074,574 8,623,356

Diff. in vega −7.9 −4.8 −1.1 0.3 0.7

Smile SMM 146,223 756,925 2,373,545 5,094,288 8,642,666

Smile SMM SE 4,710 11,138 16,781 14,437 9,801

Diff. in vega −8.3 −4.8 −0.8 0.5 1.0

ATM volatilities

MF-MR=0% 67,210 650,483 2,328,235 5,124,154 8,691,466

Vega 1% MF 14,997 60,797 95,139 93,681 72,106

Smile MF 148,130 747,270 2,347,664 5,074,574 8,623,356

Diff. in vega 5.4 1.6 0.2 −0.5 −0.9

SMM-a=0% 61,944 610,939 2,286,869 5,139,345 8,731,084

SMM SE-a=0% 2,626 10,114 16,763 16,122 11,628

Vega 1% SMM 13,915 59,861 94,495 91,859 77,375

Smile SMM 146,223 756,925 2,373,545 5,094,288 8,642,666

Diff. in vega 6.1 2.4 0.9 −0.5 −1.1

Here ‘MF’, ‘MR’, ‘a’ and ‘SE’ denote ‘Markov-functional model’, ‘mean reversion’, ‘the correlation
parameter a of (1)’ and the ‘standard error’, respectively. Any difference (‘Diff.’) is with respect to a price
at zero mean reversion or at zero a. The non-smile models use per-strike volatilities, except where indicated
that ATM volatilities are used

model can approximately be fitted to terminal correlation, by developing a novel
approximate formula for terminal correlation. The approximate formula was shown to
be of high quality in a numerical test. Empirically, the impact of terminal correlation
was shown to be somewhat significant for pricing of Bermudan swaptions in market
models, and the same effect can be attained in the single-factor Markov-functional
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Table 11 Numerical details for the delta-vega hedge results

MF 0% MF 5% MF 10%

Minimum −10,080 −9,601 −9,439

1st quartile −702 −569 −485

Median 779 716 650

3rd quartile 2,217 2,038 1,888

Maximum 18,038 16,838 16,568

SMM 0% SMM 5% SMM 10%

Minimum −5,702 −4,871 −7,120

1st quartile −435 −824 −799

Median 800 834 541

3rd quartile 2,102 2,735 2,268

Maximum 12,356 17,855 16,557

LMM 0% LMM 5% LMM 10%

Minimum −6,241 −27,794 −24,519

1st quartile −1,057 −1,261 −1,140

Median 576 297 485

3rd quartile 2,400 2,423 2,164

Maximum 26,721 24,497 22,018

Box-whisker tables for the change in value (in USD) of the hedged portfolio. The percentages denote the
mean reversion level (MF) or correlation parametrization parameter (LMM and SMM). For market models,
we use the constant exercise method, with é6smallć6 perturbation sizes

model by calibration to terminal correlation. We showed empirically by comparison
with decorrelation in multi factor market models that hedge performance for Bermu-
dan swaptions is, for practical purposes, almost identical, regardless of the model,
number of factors, or correlation specification. Our results show that the need of mod-
elling correlation can already be adequately met by a single factor model. Whether
these results extend beyond the asset class of Bermudan swaptions, is an interesting
question that we leave to answer in future research. With respect to hedge portfolios,
we showed (1) that delta hedging significantly reduces variance of P&L in both Mar-
kov-functional and market models, (2) that vega hedging additional to delta hedging
significantly further reduces variance of P&L in both Markov-functional and market
models, (3) that estimation of Greeks by finite differences over Monte Carlo for call-
able products with the regular LS algorithm and ‘large’ perturbation sizes adversely
affects the delta-vega hedge performance of market models. We showed the constant
exercise method with ‘small’ perturbation sizes enables proper functioning of market
models as risk management tools, for callable products on underlying assets that are
continuously dependent on initial market data. Moreover, we investigated the impact
of smile via displaced diffusion versions of the Markov-functional and swap market
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models. For a particular deal and USD market data, we showed that the impact of
smile is much larger that the impact of correlation.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix 1: Numerical details for Fig. 5

Numerical details for Fig. 5 are given in Table 11.
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